工业工程 ›› 2024, Vol. 27 ›› Issue (3): 1-11.doi: 10.3969/j.issn.1007-7375.230259

• 综述 •    下一篇

基于需求不确定性的数据驱动库存管理研究综述

邵思淇1, 钟远光1, 陈植2, 李延希1   

  1. 1. 华南理工大学 工商管理学院,广东 广州 510645;
    2. 香港中文大学 深圳研究院,广东 深圳 518172
  • 收稿日期:2023-12-26 发布日期:2024-07-12
  • 通讯作者: 李延希 (1997—),男,广东省人,博士研究生,主要研究方向为运营管理。Email:bmlyx@mail.scut.edu.cn E-mail:bmlyx@mail.scut.edu.cn
  • 作者简介:邵思淇 (1998—),女,四川省人,硕士研究生,主要研究方向为物流与供应链管理
  • 基金资助:
    国家自然科学基金资助项目 (72325011, 72321001)

A Review of Data-driven Inventory Management Based on Demand Uncertainty

SHAO Siqi1, ZHONG Yuanguang1, CHEN Zhi2, LI Yanxi1   

  1. 1. School of Business Administration, South China University of Technology, Guangzhou 510645, China;
    2. Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518172, China
  • Received:2023-12-26 Published:2024-07-12

摘要: 随着高质量数据的日益丰富、机器学习技术的持续进步以及计算能力的显著提升,数据驱动库存管理正迎来前所未有的发展机遇。然而,目前学术界对于这一新兴领域的研究进展尚缺乏全面系统的综述。本研究运用文献计量方法,深入分析了183篇学术论文,并通过科学知识图谱的可视化方式,全面展示了该领域的研究现状。从大数据和运营管理的双重视角出发,总结归纳了数据驱动库存管理在需求信息、基本模型和基本方法3个方面的研究结果。重点从需求不确定性和特征数据的角度介绍了4种库存管理模型:单变量数据驱动报童模型、单变量数据驱动动态库存模型、多特征数据驱动报童模型和多特征数据驱动动态库存模型。在此基础上,梳理了6种主要的数据驱动决策方法,包括贝叶斯方法、鲁棒优化方法、样本均值近似方法、分位数回归方法、操作统计方法和机器学习方法。最后,本研究从数据驱动库存管理方法与工具层面,以及面临的难点与应用热点层面,提出了未来研究的方向与建议,旨在为相关领域的研究者和实践者提供有益的参考和启示,推动数据驱动库存管理领域不断发展。

关键词: 数据驱动, 库存管理, 报童, 动态库存, 研究综述

Abstract: In recent years, with the increasing abundance of high-quality data, continuous development of machine learning techniques and significant improvements of computational capabilities, data-driven inventory management is experiencing unprecedented development opportunities. However, comprehensive and systematic reviews of research advances in this emerging field are currently lacking. In this study, an in-depth analysis of 183 academic papers is conducted using bibliometrics, and the state of the art in this field is visualized through scientific knowledge graphs. Then, the research results of data-driven inventory management from the perspectives of big data and operation management are summarized and synthesized in three aspects: demand information, basic models and basic methods. Essentially, this paper introduces four inventory management models from the perspectives of demand uncertainty and feature data: univariate data-driven newsvendor model, univariate data-driven dynamic inventory model, multi-feature data-driven newsvendor model and multi-feature data-driven dynamic inventory model. On this basis, six main data-driven decision-making methods are summarized: Bayesian analysis, robust optimization, sample average approximation, quantile regression, operation statistics and machine learning. Finally, future research directions and suggestions are discussed from the perspectives of methodologies, tools, challenges, and application hotspots in data-driven inventory management, aiming to provide valuable references and insights for researchers and practitioners in the relevant fields, and to foster the continuous development of data-driven inventory management.

Key words: data-driven, inventory management, newsvendor, dynamic inventory, literature review

中图分类号: