工业工程 ›› 2012, Vol. 15 ›› Issue (2): 71-77.

• 专题论述 • 上一篇    下一篇

多维系统优化中马氏田口强相关问题研究

  

  1. 1.上海大学 管理学院,上海 200444; 2.天津大学 管理与经济学部,天津 300072
  • 出版日期:2012-04-30 发布日期:2012-05-17
  • 作者简介: 韩亚娟(1979-),女, 陕西省人, 讲师, 博士, 主要研究方向为质量管理、工业工程.
  • 基金资助:

    高等学校博士学科点专项科研基金(新教师类)资助项目(20093108120023); 国家自然科学基金重点资助项目(70931004); 国家自然科学基金(青年基金)资助项目(71101086)

Multicollinearity Analysis of MahalanobisTaguchi System Method in Multidimensional System Optimization

  1. 1.School of Management, Shanghai University, Shanghai 200444, China;
    2. Faculty of Management and Economics, Tianjin University, Tianjin 300072, China
  • Online:2012-04-30 Published:2012-05-17

摘要: 对传统马氏田口方法进行了介绍,分析了多维系统马氏田口优化中强相关问题的影响,提出了解决强相关问题的新方法——马氏田口MP广义逆矩阵法。相对于传统的马氏田口逆矩阵法,马氏田口MP广义逆矩阵法具有存在性、唯一性和通用性的优点,能更有效地应用于多维系统的优化实践。通过对某医院血粘度诊断系统的优化与分析,进一步证实了马氏田口MP广义逆矩阵法的有效性。

关键词: 多维系统优化, 马氏田口, 强相关问题, MP广义逆矩阵

Abstract: After the effect of multicollinearity on the existing MahalanobisTaguchi system (MTS) methods in multidimensional system optimization is analyzed, a new method called MoorePenrose (MP) generalized inverse matrix method of MTS is put forward. Then, comparison is made between the new method and the existing ones. It shows that the new method outperforms the existing ones in three ways: 1) it guarantees the existence of a solution; 2) the solution obtained is unique; and 3) the solution is a generic one. Thus, it is more effective than the existing ones in multidimensional system optimization. As a case study, the new method is used for the optimization of a bloodviscositydiagnose system and the results obtained in this paper are verified.

Key words: multidimensional system optimization, Mahalanobis Taguchi system, multicollinearity, Moore Penrose (M P)generalized inverse matrix