工业工程 ›› 2019, Vol. 22 ›› Issue (5): 126-132,149.doi: 10.3969/j.issn.1007-7375.2019.05.016

• 实践与应用 • 上一篇    下一篇

基于R-Vine Copula的多维混合型数据控制图设计

张乔微, 李艳婷   

  1. 上海交通大学 机械与动力工程学院, 上海 200240
  • 收稿日期:2019-02-01 出版日期:2019-10-31 发布日期:2019-10-29
  • 作者简介:张乔微(1995-),女,安徽省人,硕士研究生,主要研究方向为多维混合型数据监测
  • 基金资助:
    国家自然科学基金重点资助项目(71531010);国家自然科学基金资助项目(71672109)

An R-Vine Copula Based Control Chart for Monitoring Multivariable and Mixed-type Data

ZHANG Qiaowei, LI Yanting   

  1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2019-02-01 Online:2019-10-31 Published:2019-10-29

摘要: 多维混合型数据监测问题一直是质量控制和质量管理中的重点和难点。混合型数据包括名义型、顺序型和数值型3种类型。传统的多变量控制图往往只考虑数值型的数据,在应用中存在一定的局限性。同时,在实际场景中,各类变量之间往往存在一定的相关性,这也是在传统控制图中容易被忽略的关键点。本文通过引入Copula-Vine模型,充分利用了顺序型变量的秩相关性,建立了一种新的基于R-Vine Copula的混合型数据控制图(R-Vine Copula control chart, RVC)。通过算例比较,验证了该控制图相对于现有模型在混合型数据监测方面更强的灵活性和有效性。

关键词: 多维混合型数据, 顺序型变量, R-Vine Copula模型, 统计过程控制

Abstract: Multivariable mixed-type data monitoring is a key and difficult point in quality control and quality management. Mixed-type data includes three types:nominal, ordinal and numerical. Traditional multivariable control charts only consider numerical variables and have limitations in applications. At the same time, in real cases, there exists correlations between different variables, which is also a significant factor and easily ignored in traditional control charts. By introducing the Copula-Vine model, the rank of ordinal variables is full used, establishing a new mixed-type data control chart based on R-Vine Copula (R-Vine Copula control chart, RVC). The proposed RVC control chart is then applied to real data to demonstrate its flexibility and effectiveness higher than existing models.

Key words: multivariable mixed-type data, ordinal variables, R-Vine Copula model, statistical processes control

中图分类号: