工业工程 ›› 2020, Vol. 23 ›› Issue (2): 19-25,48.doi: 10.3969/j.issn.1007-7375.2020.02.003

• 专题论述 • 上一篇    下一篇

改进遗传算法求解多时间约束的柔性作业车间调度问题

张国辉, 胡一凡, 孙靖贺   

  1. 郑州航空工业管理学院 管理工程学院,河南 郑州 450015
  • 收稿日期:2019-12-12 发布日期:2020-04-22
  • 作者简介:张国辉(1980-),男,河南省人,教授,博士,主要研究方向为车间调度、智能优化算法
  • 基金资助:
    国家自然科学基金资助项目(U1904167, 51705472);教育部人文社科研究规划基金资助项目(18YJAZH125);河南省科技创新杰出青年资助项目(184100510001)

An Improved Genetic Algorithm for Flexible Job Shop Scheduling Problem with Multiple Time Constraints

ZHANG Guohui, HU Yifan, SUN Jinghe   

  1. School of Management Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450015, China
  • Received:2019-12-12 Published:2020-04-22

摘要: 将加工时间、调整时间和移动时间分别作为独立时间因素考虑到柔性作业车间调度模型中,建立以最大完工时间最小、总调整时间最小、总移动时间最小为目标的考虑多时间约束的柔性作业车间调度模型,并提出改进的遗传算法求解该模型。通过测试标准数据集,并对比其他文献算法,验证了改进的遗传算法的可行性和有效性。

关键词: 柔性作业车间调度, 遗传算法, 调整时间, 移动时间, 最大完工时间

Abstract: The processing time, set-up time and transport time are considered as independent time factors in the flexible job shop scheduling model. A flexible job shop scheduling model considering multiple time constraints is established with the goal of minimum makespan, minimum total set-up time and minimum total transport time. An improved genetic algorithm is proposed to solve the model. By testing the standard data set and comparing with other literature algorithms, the feasibility and effectiveness of the improved genetic algorithm are verified.

Key words: flexible job shop scheduling, genetic algorithm, set-up time, transport time, makespan

中图分类号: