工业工程 ›› 2020, Vol. 23 ›› Issue (2): 91-99.doi: 10.3969/j.issn.1007-7375.2020.02.012

• 专题论述 • 上一篇    下一篇

考虑疲劳效应的伤员应急手术调度模型及算法

杨枫   

  1. 河南中医药大学 管理学院,河南 郑州 450046
  • 收稿日期:2019-12-12 发布日期:2020-04-22
  • 作者简介:杨枫(1978-),男,河南省人,副教授,博士,主要研究方向为智能优化与应急管理
  • 基金资助:
    教育部人文社会科学研究青年基金资助项目(18YJCZH216);河南省重点研发与推广专项(科技攻关)资助项目(202102310637);河南省教育科学“十三五”规划一般课题资助((2018)-JKGHYB-0129);河南中医药大学人文社会科学类研究生导师能力提升专项(YJSDS-2019-01);河南中医药大学教育教学改革研究与实践资助项目(2019JX27)

Emergency Surgical Scheduling Model and Algorithm Design of Casualty Considering Fatigue Effect in the Urban Emergency

YANG Feng   

  1. College of Management, Henan University of Chinese Medicine, Zhengzhou 450046, China
  • Received:2019-12-12 Published:2020-04-22

摘要: 为了解决城市突发事件应急救援中批量应急手术的调度问题,并考虑医生长时间连续手术对手术持续时间和挽救病人生命的成功率带来的恶化效应,提出了三阶段批量手术调度模型,将应急手术调度看作是存在并行机的流水车间调度问题。利用改进的飞蛾扑火算法对应急手术模型进行求解,并通过实证来测试模型和算法的有效性。为了验证算法的性能,将经典飞蛾扑火算法、粒子群算法和布谷鸟算法与其对比,取20次运行结果,得知最大手术完成时间均值中改进的飞蛾扑火算法为最小,调度模型给出的调度方案中,3个救治阶段在时间维度上保持连贯。仿真结果表明,改进的飞蛾扑火算法能很好地求解批量手术调度模型,获得较好的调度结果。

关键词: 突发事件, 手术调度, 疲劳效应, 飞蛾扑火算法, 混沌扰动

Abstract: In order to solve the scheduling problem of batch emergency surgery in urban emergency rescue, and considering deteriorating effect for the duration of operation and success rate of saving life brought by long-term continuous operations, a three-stage batch surgery scheduling model is proposed, regarding emergency surgery scheduling as a flow-shop scheduling problem with parallel machines. Then the model is solved and tested by the improved moth-flame optimization (IMFO) and empirical evidence, respectively. In order to verify the performance of the algorithm, the classical moth fire suppression algorithm (MFO), particle swarm optimization algorithm (PSO) and cuckoo search algorithm (CS) are compared. It can be seen that IMFO is the minimum in the results of mean value of each algorithm after 20 simulations. The three treatment stages of the scheduling scheme given by the scheduling model are coherent in time dimension. The experimental results show that IMFO can solve the model well and get good results.

Key words: emergency, surgical scheduling, fatigue effect, moth-flame optimization, chaotic disturbance

中图分类号: