工业工程 ›› 2021, Vol. 24 ›› Issue (3): 89-95.doi: 10.3969/j.issn.1007-7375.2021.03.012

• 专题论述 • 上一篇    下一篇

基于灰色周期外延的航线客流量区间序列预测模型

汪瑜, 车通, 鄢仕林   

  1. 中国民航飞行学院 机场工程与运输管理学院,四川 广汉 618307
  • 收稿日期:2020-06-24 发布日期:2021-06-26
  • 作者简介:汪瑜(1983-),男,江苏省人,副教授,博士,主要研究方向为民航运输系统优化
  • 基金资助:
    国家自然科学基金资助项目(U1733127);四川省科技厅社会发展领域重点研发计划资助(2020YFS0541);四川省教育厅科研资助项目(18ZB0682);中国民航飞行学院民航运输规划智能决策研究所计划资助项目(JG2019-32)

A Prediction Model of Route Passenger Flow Interval Sequence Based on Grey-periodic Extension

WANG Yu, CHE Tong, YAN Shilin   

  1. School of Airport Engineering and Transportation Management, Civil Aviation Flight University of China, Guanghan 618307, China
  • Received:2020-06-24 Published:2021-06-26

摘要: 为解决无法获取先验分布模式的“贫信息、小样本”航线随机客流量预测问题,提取这类航线客流量时间序列的上、下界信息,并在中间增加一个偏好值,形成包含左界点、中间点和右界点的三元区间数结构的航线客流量表达形式,将三元区间数数据结构转换为左半径、中心及右半径3个独立的时间序列,再利用灰色系统理论建立航线客流量预测模型,并利用周期外延模型对上述模型得出的残差序列进行修正。采用2004—2019年民航客运量数据进行验证分析。结果发现,ARIMA(autoregressive integrated moving average model)模型预测检验的平均绝对百分比误差为6.77%,灰色周期外延模型的平均绝对百分比误差为1.66%,因此后者在短期预测上有较大优势。

关键词: 航空运输, 客运量预测, 三元区间数, 区间时间序列, 灰色周期外延模型

Abstract: To solve the forecasting problem of the stochastic passenger flow volume with the characteristic of poor information, small sample and non-informative prior distribution pattern, the upper and lower bound information of the passenger flow time series of these routes were extracted and a preference value was added into the middle to form a ternary interval number structure. This structure contained three elements, namely, left boundary point, middle point and right boundary point. Then this ternary interval number data structure was transformed into three independent time series, namely, a left and a right radius time series as well as a center time series. The gray system theory was used to establish a route passenger flow prediction model, and the gray extension model was then used to compensate the residual sequence obtained by the above model. The passenger transportation volume data of civil aviation ranging from 2004 to 2019 was used to conduct the verification analysis. The result shows that the mean absolute percentage error (MAPE) resulting from ARIMA method is 6.77% as opposed to 1.66% from the use of the grey-periodic extensional combinatorial model. Therefore, the latter has a significant advantage in short-term prediction.

Key words: air transportation, passenger traffic volume forecast, ternary interval number, interval time series, grey-periodic extensional combinatorial model

中图分类号: