工业工程 ›› 2021, Vol. 24 ›› Issue (3): 130-138.doi: 10.3969/j.issn.1007-7375.2021.03.017

• 实践与应用 • 上一篇    下一篇

基于改进NSGA-II的多项目多技能人力资源调度研究

王莹莹, 吴立云   

  1. 河南理工大学 能源科学与工程学院,河南 焦作 454000
  • 收稿日期:2020-02-23 发布日期:2021-06-26
  • 通讯作者: 吴立云(1973-),女,河北省人,副教授,博士,主要研究方向为安全系统工程、现代物流与供应链管理。E-mail:jitwly@hpu.edu.cn E-mail:jitwly@hpu.edu.cn
  • 作者简介:王莹莹(1993-),女,河南省人,硕士研究生,主要研究方向为项目调度、人力资源
  • 基金资助:
    国家自然科学基金项目资助(51674102,51874121);河南省重点科技攻关计划资助项目(182102310002);河南省高校基本科研业务费专项资金资助(NSFRF180104);NSFC-河南联合基金重点资助项目(U1904210)

A Research on Multi-project Multi-skill Human Resource Scheduling Based on Improved NSGA-II

WANG Yingying, WU Liyun   

  1. School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
  • Received:2020-02-23 Published:2021-06-26

摘要: 多项目并行的人力资源管理日益成为研发型企业合理配置各类资源、实现利润最大化的有效方式。从项目成本和多能工满意度角度出发,运用第2代非支配排序遗传算法和蚁群算法对多能工分配问题进行研究。考虑多能工技能组合与项目任务需求之间的匹配以及技能熟练水平对任务作业时间的影响,构建了以实现多项目总工期和多能工间工作量均衡为目标的优化模型。根据模型的约束条件,提出了一系列启发式规则提高算法效率,并结合第2代非支配排序遗传算法和蚁群算法的特点,利用新开发的算法对模型进行求解。通过数值算例验证了模型和算法的有效性。

关键词: 项目调度, 非支配排序遗传算法, 人力资源, 多项目, 多技能

Abstract: When multiple projects work at the same time, rational allocation of various resources and pursuit of greater economic profits through human resource management have become the focus of research and development enterprises. From the perspective of project cost and satisfaction of multi-skilled workers, the second-generation non-dominated sorting genetic algorithm and ant colony algorithm are used to study the allocation of multi-skilled workers. Considering the matching between the skill mix of multi-skilled workers and the needs of project tasks and the impact of skill proficiency on task operation time, an optimization model is constructed that aims to achieve the total duration of multi-projects and the workload balance among multi-skilled workers. According to the constraints of the model, a series of heuristic rules are proposed to improve the efficiency of the algorithm. The algorithm is developed by combining the characteristics of the second-generation non-dominated sorting genetic algorithm and ant colony algorithm to solve the model. Numerical examples verify the effectiveness of the model and algorithm.

Key words: project scheduling, non-dominated sorting genetic algorithm, human resources, multi-project, multi-skill

中图分类号: