工业工程 ›› 2022, Vol. 25 ›› Issue (3): 115-123.doi: 10.3969/j.issn.1007-7375.2022.03.014

• 专题论述 • 上一篇    下一篇

基于绿色生产的混合流水车间调度问题研究

唐红涛1,2, 张缓1,2   

  1. 1. 武汉理工大学 1. 机电工程学院;
    2. 湖北省数字制造重点实验室,湖北 武汉 430070
  • 收稿日期:2020-12-07 发布日期:2022-07-06
  • 通讯作者: 张缓(1994—)女,河南省人,硕士研究生,主要研究方向为智能制造、智能优化算法及应用等。E-mail: 18437955263@163.com E-mail:18437955263@163.com
  • 作者简介:唐红涛(1987—),男,湖北省人,副教授,博士,主要研究方向为智能制造、智能优化算法及应用等
  • 基金资助:
    国家自然科学基金资助项目(51705384);湖北省自然科学基金资助项目(2016CFB175)

A Research on Hybrid Flow Shop Scheduling Based on Green Production

TANG Hongtao1,2, ZHANG Huan1,2   

  1. 1. School of Mechanical and Electronic Engineering;
    2. Hubei Key Laboratory of Digital Manufacturing, Wuhan University of Technology, Wuhan 430070, China
  • Received:2020-12-07 Published:2022-07-06

摘要: 针对绿色可持续发展问题,通过量化绿色指标评价方法,构建最小化最大完工时间、碳排放和噪声的多目标混合流水车间调度模型,并提出一种混合离散多目标帝国竞争算法(hybrid discrete multi-objective imperial competition algorithm,HDMICA)对模型进行求解。采用基于混沌反向学习策略的种群初始化方式提高初始化种群的多样性;基于本文模型设计3种有效的局部搜索策略以提升算法局部搜索能力;通过实验验证所提算法的有效性及优越性。

关键词: 量化绿色指标, 混合流水车间调度, 混合离散多目标帝国竞争算法, 混沌反向学习策略

Abstract: Aiming at green sustainable development, a multi-objective hybrid flow shop scheduling model is established, with minimizing the maximum makespan, carbon emission and noise, by quantifying green index evaluation method. To solve the model, a hybrid discrete multi-objective imperial competition algorithm (HDMICA) is proposed. The population initialization method based on chaotic reverse learning strategy is adopted to improve the diversity of the initial population. Based on the model in this research, three effective local search strategies are designed to improve the local search capability of the algorithm. The feasibility and effectiveness of the proposed algorithm are verified by experiments.

Key words: quantifying green index, hybrid flow shop scheduling, hybrid discrete multi-objective imperial competition algorithm, chaotic reverse learning strategy

中图分类号: