[1] 于亚萍, 孙立宁, 张峰峰, 等. 基于小波变换的多特征融合sEMG模式识别[J]. 传感技术学报, 2016, 29(4): 512-518 YU Yaping, SUN Lining, ZHANG Fengfeng, et al. sEMG pattern recognition based on multi feature fusion of wavelet transform[J]. Chinese Journal of Sensors and Actuators, 2016, 29(4): 512-518 [2] 杜振宁, 向春枝. 基于小波包分解和PCA的轴承故障诊断[J]. 控制工程, 2016, 23(6): 812-815 DU Zhenning, XIANG Chunzhi. A wavelet packet decomposition and principal component analysis approach for feature extraction in bearing failure vibration signal[J]. Control Engineering of China, 2016, 23(6): 812-815 [3] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical Physical & Engineering Sciences, 1998, 454(1971): 903-995 [4] WU Zhaohua, HUANG Norden. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances In Adaptive Data Analysis, 2011, 1(1): 1-41 [5] SMITH J S. The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Interface, 2005, 2(5): 443-454 [6] 向玲, 鄢小安. 汽轮机转子故障诊断中LMD法和EMD法的性能对比研究[J]. 动力工程学报, 2014, 34(12): 945-951 XIANG Ling, YAN Xiaoan. Performance contrast between LMD and EMD in fault diagnosis of turbine rotors[J]. Journal of Chinese Society of Power Engineering, 2014, 34(12): 945-951 [7] BANDT C, POMPE B. Permutation entropy: a natural complexity measure for time series[J]. Physical Review Letters, 2002, 88(17): 174102 [8] 张建伟, 马晓君, 侯鸽, 等. 基于排列熵的泵站压力管道运行状态监测[J]. 振动、测试与诊断, 2018, 38(1): 148-154 [9] 程军圣, 马兴伟, 杨宇. 基于排列熵和VPMCD的滚动轴承故障诊断方法[J]. 振动与冲击, 2014, 33(11): 119-123 CHENG Junsheng, MA Xingwei, YANG Yu. Rolling bearing fault diagnosis method based on permutation entropy and VPMCD[J]. Journal of Vibration and Shock, 2014, 33(11): 119-123 [10] 丁闯, 张兵志, 冯辅周, 等. 局部均值分解和排列熵在行星齿轮箱故障诊断中的应用[J]. 振动与冲击, 2017, 36(17): 55-60 DIND Chuang, ZHANG Bingzhi, FENG Fuzhou, et al. Application of local mean decomposition and permutation entropy in fault diagnosis of planetary gearboxes[J]. Journal of Vibration and Shock, 2017, 36(17): 55-60 [11] 石志标, 陈斐, 曹丽华. 基于排列熵与IFOA-RVM的汽轮机转子故障诊断[J]. 振动与冲击, 2018, 37(5): 79-84 SHI Zhibiao, CHEN Fei, CAO Lihua. Fault diagnosis of steam turbine rotor based on permutation entropy and IFOA-RVM[J]. Journal of Vibration and Shock, 2018, 37(5): 79-84 [12] 马晓敏, 王新. 基于遗传算法的BP神经网络改进[J]. 云南大学学报(自然科学版), 2013, 35(s2): 34-38 MA Xiaomin, WANG Xin. An improved BP neural network algorithm based on genetic algorithm[J]. Journal of Yunnan University (Natural Science), 2013, 35(s2): 34-38 [13] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1): 489-501
|