工业工程 ›› 2022, Vol. 25 ›› Issue (3): 157-163.doi: 10.3969/j.issn.1007-7375.2022.03.019

• 实践与应用 • 上一篇    下一篇

基于全过程的偶发性拥堵消散时间预测模型

徐韬1,2, 祝烨2, 谢晓忠2, 晏秋萍2, 程龙春2   

  1. 1. 重庆交通大学 交通运输学院,重庆 400074;
    2. 重庆市市政设计研究院有限公司,重庆 400020
  • 收稿日期:2021-02-26 发布日期:2022-07-06
  • 作者简介:徐韬(1992—),男,重庆市人,中级工程师,博士研究生,主要研究方向为交通运输规划与管理
  • 基金资助:
    重庆市科研创新资助项目(CYS15188)

A Prediction Model of Occasional Congestion Dissipation Time Based on the Whole Process

XU Tao1,2, ZHU Ye2, XIE Xiaozhong2, YAN Qiuping2, CHENG Longchun2   

  1. 1. Chongqing Jiaotong University College of Traffic &Transportation, Chongqing 400074, China;
    2. Chongqing Municipal Design and Research Institute Limited Company, Chongqing 400020, China
  • Received:2021-02-26 Published:2022-07-06

摘要: 为减少偶发性交通拥堵消散时间预测误差,基于事故全过程将拥堵消散时间分为驻留时间、处置时间及恢复时间,从驾驶员性格特征、事故等级特征值、初始速度建立驻留时间和处置时间回归模型,利用线性递减时变权重及速度限制改进标准粒子群算法优化RBF神经网络权重,以TransModeler仿真数据及实测数据为训练样本,建立偶发拥堵恢复时间RBF神经网络模型。仿真结果表明,模型平均绝对误差为245.3 s,其中改进PSO-RBF网络对恢复时间预测相对误差为11.2%,均方根误差为102.3,平均相对误差较单一RBF网络、标准PSO-RBF网络分别下降38.1%、23.8%。

关键词: 交通工程, 全过程, 消散时间, 神经网络, 粒子群优化

Abstract: In order to reduce the prediction error of occasional traffic congestion dissipation time, based on the whole process of the accident, the congestion dissipation time is divided into dwell time, disposal time and recovery time, and the regression models of dwell time and disposal time are established from the driver's personality characteristics, accident grade characteristic value and initial speed. The weight of RBF neural network is optimized by using linear decreasing time-varying weight and speed limiting improved standard particle swarm optimization algorithm. The RBF neural network model of occasional congestion recovery time is established by taking Transmodeler simulation data and measured data as training samples. The simulation results show that the average absolute error of the model is 245.3 s. The relative error of improved PSO-RBF network for prediction of recovery time is 11.2%, the root mean square error is 102.3, the average relative error is 38.1% and 23.8% lower than that of single RBF network and standard PSO-RBF network respectively.

Key words: traffic engineering, whole process, dissipation time, neural network, particle swarm optimization

中图分类号: