[1] 陈茜. 网络预约出租车智能调度系统的研究与设计 [D]. 北京: 北京化工大学, 2019. CHEN Qian. Research and design of network vehicle intelligent dispatching system [D]. Beijing: Beijing University of Chemical Technology, 2019 [2] ZHANG K, FENG Z, CHEN S, et al. A framework for passengers demand prediction and recommendation[C]//Proceedings of the 2016 IEEE International Conference on Services Computing (SCC). San Fransisco: IEEE, 2016. [3] MOREIRA-MATIAS L, GAMA J, FERREIRA M, et al. Predicting taxi–passenger demand using streaming data[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3): 1393-402 [4] DAVIS N, RAINA G, JAGANNATHAN K. A multi-level clustering approach for forecasting taxi travel demand[C]//Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). Rio: IEEE, 2016. [5] LI X, ZHANG Y, DU M, et al. The forecasting of passenger demand under hybrid ridesharing service modes: A combined model based on WT-FCBF-LSTM[J]. Sustainable Cities and Society, 2020, 62: 102419 [6] XU J, RAHMATIZADEH R, BöLöNI L, et al. Real-time prediction of taxi demand using recurrent neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(8): 2572-2581 [7] LI Y, LU J, ZHANG L, et al. Taxi booking mobile app order demand prediction based on short-term traffic forecasting[J]. Transportation Research Record, 2017, 2634(1): 57-68 [8] VANICHRUJEE U, HORANONT T, PATTARA-ATIKOM W, et al. Taxi demand prediction using ensemble model based on RNNs and XGBOOST[C]//Proceedings of the 2018 International Conference on Embedded Systems and Intelligent Technology & International Conference on Information and Communication Technology for Embedded Systems (ICESIT-ICICTES).Khon Kaen: IEEE, 2018. [9] YAN Z, LV S. Short-term forecast model of taxi demand based on time and space heterogeneity[J]. Journal of Intelligent & Fuzzy Systems, 2021, 41: 1-12 [10] AHMED M S, COOK A R. Analysis of freeway traffic time-series data by using Box-Jenkins techniques[J]. Transportation Research Record, 1979, 722: 1-9 [11] WILLIAMS R J, ZIPSER D. A learning algorithm for continually running fully recurrent neural networks[J]. Neural Computation, 1989, 1(2): 270-280 [12] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780 [13] ZHANG K, LIU Z, ZHENG L. Short-term prediction of passenger demand in multi-zone level: temporal convolutional neural network with multi-task learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1480-1490 [14] KE J, ZHENG H, YANG H, et al. Short-term forecasting of passenger demand under on-demand ride services: A spatio-temporal deep learning approach[J]. Transportation Research Part C:Emerging Technologies, 2017, 85: 591-608 [15] ZHAO L, SONG Y, ZHANG C, et al. T-gcn: A temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(9): 3848-3858 [16] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [R/OL]. (2017-02-22). https://doi.org/10.48550/arXiv.1609.02907. [17] TANG J, LIANG J, LIU F, et al. Multi-community passenger demand prediction at region level based on spatio-temporal graph convolutional network[J]. Transportation Research Part C:Emerging Technologies, 2021, 124: 102951 [18] BAI L, YAO L, WANG X, et al. Deep spatial temporal sequence modeling for multi-step passenger demand prediction[J]. Future Generation Computer Systems, 2021, 121: 25-34 [19] HU Q, MING L, XI R, et al. SOUP: A fleet management system for passenger demand prediction and competitive taxi supply[C/OL]//Proceedings of the 2021 IEEE 37th International Conference on Data Engineering (ICDE). (2021-04). http://dx.doi.org/10.1109/ICDE51399.2021.00297. [20] VAPNIK V. Pattern recognition using generalized portrait method[J]. Automation and Remote Control, 1963, 24: 774-780
|