工业工程 ›› 2023, Vol. 26 ›› Issue (4): 104-113.doi: 10.3969/j.issn.1007-7375.2023.04.013

• 系统建模与优化算法 • 上一篇    下一篇

需求不确定下低碳多式联运路径鲁棒优化

邓明君, 代玉珍, 李响   

  1. 华东交通大学 交通运输工程学院,江西 南昌 330013
  • 收稿日期:2022-09-02 发布日期:2023-09-08
  • 通讯作者: 代玉珍(1997-),女,安徽省人,硕士研究生,主要研究方向为综合运输。E-mail:2507312057@qq.com E-mail:2507312057@qq.com
  • 作者简介:邓明君(1978-),男,陕西省人,副教授,博士,主要研究方向为综合运输、智能交通
  • 基金资助:
    国家自然科学基金资助项目 (51965021);江西省自然科学基金资助项目 (20142BAB201015);江西省教育厅科研资助项目 (CJJ160476)

Robust Optimization of Multi-modal Transportation Routing with Low-carbon under Demand Uncertainty

DENG Mingjun, DAI Yuzhen, LI Xiang   

  1. College of Transportation Engineering, East China Jiaotong University, Nanchang 33013, China
  • Received:2022-09-02 Published:2023-09-08

摘要: 基于需求不确定和碳交易政策,为使多式联运经营人能制定低碳高效的运输方案,综合考虑铁路、水路班期和收货时间窗的约束,采用鲁棒优化描述需求不确定,构建以经济成本最小为目标的多式联运路径鲁棒优化模型,使用遗传算法检验模型的合理性和有效性。结果表明,铁路、水路的班期约束会产生等待时间进而产生等待成本;需求不确定的鲁棒优化不仅会增加19%的经济成本,而且在运输方式的选取上更偏向于低碳运输;多式联运经营人通过权衡最大遗憾值和经济成本之间的关系,使得其既能轻松处理货运市场的需求波动,又能响应低碳要求。

关键词: 多式联运, 碳交易政策, 需求不确定, 班期, 鲁棒优化

Abstract: Based on the demand uncertainty and carbon trading policies, this work aims to enable multi-modal transportation operators to develop low-carbon and efficient transportation plans. Considering the constraints of railway and waterway schedules as well as receiving time windows, a robust optimization model of multi-modal transportation routing with the objective as the minimum of economic cost is established using robust optimization to describe uncertain demand. Genetic algorithm is adopted to verify the rationality and effectiveness of the model. Results show that the schedule constraints of railway and waterway generate waiting time and then waiting cost; robust optimization with uncertain demand not only increases the economic cost by 19%, but also prefer low-carbon transportation in the mode selection; By balancing the relationship between the maximal regret value and the economic cost, multi-modal transportation operators can easily handle demand fluctuations in the freight market while also responding to low-carbon requirements.

Key words: multi-modal transportation, carbon trading policies, demand uncertainty, schedule, robust optimization

中图分类号: