Industrial Engineering Journal ›› 2024, Vol. 27 ›› Issue (2): 14-26.doi: 10.3969/j.issn.1007-7375.230241
Previous Articles Next Articles
CHEN Caihua, SHE Chengxi, WANG Qingyang
Received:
2023-12-12
Online:
2024-04-30
Published:
2024-04-29
CLC Number:
CHEN Caihua, SHE Chengxi, WANG Qingyang. A Review of Trustworthy Machine Learning[J]. Industrial Engineering Journal, 2024, 27(2): 14-26.
[1] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. [2] SHE C, LI K, REN Y, et al. Tool wear prediction method based on bidirectional long short-term memory neural network of single crystal silicon micro-grinding[J]. The International Journal of Advanced Manufacturing Technology, 2023: 1-11. [3] ESHETE B. Making machine learning trustworthy[J]. Science, 2021, 3736556: 743-744 [4] THURAISINGHAM B. Trustworthy machine learning[J]. IEEE Intelligent Systems, 2022, 371: 21-24 [5] DAI E, ZHAO T, ZHU H, et al. A comprehensive survey on trustworthy graph neural networks: Privacy, robustness, fairness, and explainability[EB/OL]. (2022-09-27) [2024-03-13].https://doi.org/10.48550/arXiv.2204.08570. [6] SCHLEGEL M, SATTLER K. Management of machine learning lifecycle artifacts: A survey[J]. ACM SIGMOD Record, 2023, 51(4): 18-35 [7] SURESH H, GUTTAG J V. A framework for understanding unintended consequences of machine learning [EB/OL]. (2021-12-01) [2024-03-13]. https://doi.org/10.1145/3465416.3483305. [8] HARDT M, PRICE E, SREBRO N. Equality of opportunity in supervised learning[EB/OL]. (2016-10-7) [2024-03-13]. https://doi.org/10.48550/arXiv.1610.02413. [9] MEHRABI N, MORSTATTER F, SAXENA N, et al. A survey on bias and fairness in machine learning[J]. ACM Computing Surveys, 2021, 54(6): 1-35 [10] 纪守领, 李进锋, 杜天宇, 等. 机器学习模型可解释性方法、应用与安全研究综述[J]. 计算机研究与发展, 2019, 56(10): 2071-2096 JI Shouling, LI Jinfeng, DU Tianyu, et al. Survey on techniques, applications and security of machine learning interpretability[J]. Journal of Computer Research and Development, 2019, 56(10): 2071-2096 [11] NASR M, SHOKRI R, HOUMANSADR A. Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning[C]//2019 IEEE symposium on security and privacy (SP). San Francisco: IEEE, 2019: 739-753. [12] LIU HY, CHAUDHARY M, WANG HH. Towards trustworthy and aligned machine learning: A data-centric survey with causality perspectives[EB/OL]. (2023-07-31) [2024-03-13]. https://doi.org/10.48550/arXiv.2307.16851. [13] ZHOU Z. Machine learning[M]. New York: Springer Nature, 2021. [14] 纪守领, 杜天宇, 李进锋, 等. 机器学习模型安全与隐私研究综述[J]. 软件学报, 2021, 32(1): 41-67 JI Shouling, DU Tianyu, LI Jinfeng, et al. Security and privacy of machine learning models: a survey[J]. Journal of Software, 2021, 32(1): 41-67 [15] D’AMOUR A, SRINIVASAN H, ATWOOD J, et al. Fairness is not static: deeper understanding of long term fairness via simulation studies[C]//Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. New York: Association for Computing Machinery, 2020: 525-534. [16] CORBETT-DAVIES S, GOEL S. The measure and mismeasure of fairness: A critical review of fair machine learning[EB/OL]. (2023-08-14) [2024-03-13]. https://doi.org/10.48550/arXiv.1808.00023. [17] CHOULDECHOVA A. Fair prediction with disparate impact: A study of bias in recidivism prediction instruments[J]. Big data, 2017, 52: 153-163 [18] KLEINBERG J, MULLAINATHAN S, RAGHAVAN M. Inherent trade-offs in the fair determination of risk scores[EB/OL]. (2016-11-17) [2024-03-13]. https://doi.org/10.48550/arXiv.1609.05807. [19] SILVA S, KENNEY M. Algorithms, platforms, and ethnic bias[J]. Communications of the ACM, 2019, 62(11): 37-39 [20] D’ALESSANDRO B, O’NEIL C, LAGATTA T. Conscientious classification: A data scientist’s guide to discrimination-aware classification[J]. Big data, 2017, 52: 120-134 [21] FRIEDMAN B, NISSENBAUM H. Bias in computer systems[J]. ACM Transactions on Information Systems, 1996, 143: 330-347 [22] 陈晋音, 陈奕芃, 陈一鸣, 等. 面向深度学习的公平性研究综述[J]. 计算机研究与发展, 2021, 58(2): 264-280 CHEN Jinyin, CHEN Yipeng, CHEN Yiming. Fairness research on deep learning[J]. Journal of Computer Research and Development, 2021, 58(2): 264-280 [23] DU M, LIU N, YANG F, et al. Learning credible deep neural networks with rationale regularization[C]//2019 IEEE International Conference on Data Mining (ICDM). Piscataway: IEEE, 2019: 150-159. [24] IBRAHIM M, LOUIE M, MODARRES C, et al. Global explanations of neural networks: Mapping the landscape of predictions[C]//Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society. New York: ACM, 2019: 279-287. [25] SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[EB/OL]. (2014-02-19) [2024-03-13]. https://doi.org/10.48550/arXiv.1312.6199. [26] VON WRIGHT G H. Explanation and understanding[M]. Ithaca: Cornell University Press, 2004. [27] GILPIN L H, BAU D, YUAN B Z, et al. Explaining explanations: An overview of interpretability of machine learning[C]//2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA). Piscataway: IEEE, 2018: 80-89. [28] 陈珂锐, 孟小峰. 机器学习的可解释性[J]. 计算机研究与发展, 2021, 57(9): 1971-1986 CHEN Kerui, MENG Xiaofeng. Interpretation and understanding in machine learning[J]. Journal of Computer Research and Development, 2021, 57(9): 1971-1986 [29] CHEN Z, XIAO F, GUO F, et al. Interpretable machine learning for building energy management: A state-of-the-art review[J]. Advances in Applied Energy, 2023: 100123. [30] RIBEIRO M T, SINGH S, GUESTRIN C. “Why should i trust you?” Explaining the predictions of any classifier[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1135-1144. [31] LUNDBERG S M, ERION G, CHEN H, et al. From local explanations to global understanding with explainable AI for trees[J]. Nature Machine Intelligence, 2020, 21: 56-67 [32] YOSINSKI J, CLUNE J, NGUYEN A, et al. Understanding neural networks through deep visualization[EB/OL]. (2015-06-22) [2024-03-13]. https://doi.org/10.48550/arXiv.1506.06579. [33] LI X, CAO C, SHI Y, et al. A survey of data-driven and knowledge-aware explainable AI[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 341: 29-49 [34] BASTANI O, KIM C, BASTANI H. Interpreting blackbox models via model extraction[EB/OL]. (2019-01-24) [2024-03-13]. https://doi.org/10.48550/arXiv.1705.08504. [35] DOSOVITSKIY A, BROX T. Inverting visual representations with convolutional networks[C]//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 4829-4837. [36] CHATTERJEE S, HADI A S. Sensitivity analysis in linear regression[M]. Hoboken: John Wiley & Sons, 2009. [37] LUNDBERG S M, LEE S. A unified approach to interpreting model predictions[J]. Advances in Neural Information Processing Systems, 2017, 30: 4768-4777. [38] KAUR D, USLU S, RITTICHIER K J, et al. Trustworthy artificial intelligence: a review[J]. ACM Computing Surveys, 2022, 552: 1-38 [39] GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[EB/OL]. (2015-05-20) [2024-03-13]. https://doi.org/10.48550/arXiv.1412.6572. [40] SALMAN H, LI J, RAZENSHTEYN I, et al. Provably robust deep learning via adversarially trained smoothed classifiers[J]. Advances in Neural Information Processing Systems, 2019, 32: 11292-11303 [41] KATZ G, BARRETT C, DILL D L, et al. Reluplex: An efficient SMT solver for verifying deep neural networks[C]//Computer Aided Verification: 29th International Conference, CAV 2017. Heidelberg: Springer, 2017: 97-117. [42] CHENG CH, NüHRENBERG G, RUESS H. Maximum resilience of artificial neural networks[C]//Automated Technology for Verification and Analysis: 15th International Symposium, ATVA 2017. Heidelberg: Springer, 2017: 251-268. [43] WONG E, KOLTER Z. Provable defenses against adversarial examples via the convex outer adversarial polytope[C]//International Conference on Machine Learning. Maastricht: ML Research Press, 2018: 5286-5295. [44] PULINA L, TACCHELLA A. An abstraction-refinement approach to verification of artificial neural networks[C]//Computer Aided Verification: 22nd International Conference, CAV 2010. Heidelberg: Springer, 2010: 243-257. [45] LECUYER M, ATLIDAKIS V, GEAMBASU R, et al. Certified robustness to adversarial examples with differential privacy[C]//2019 IEEE symposium on security and privacy (SP) . San Francisco: IEEE, 2019: 656-672. [46] GOWAL S, DVIJOTHAM K D, STANFORTH Robert, et al. Scalable verified training for provably robust image classification[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV) . Seoul: IEEE, 2019: 4842-4851. [47] MANGAL R, NORI A V, ORSO A. Robustness of neural networks: A probabilistic and practical approach[C]//2019 IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER) . Montreal: IEEE, 2019: 93-96. [48] ŠRNDIC N, LASKOV P. Detection of malicious pdf files based on hierarchical document structure[C/OL]//Proceedings of the 20th annual network & distributed system security symposium. (2014-04-24) [2024-03-13]. https://www.ndss-symposium.org/wp-content/uploads/2017/09/12_3_0.pdf. [49] WITTEL G L, WU S F. On Attacking Statistical Spam Filters[C/OL]//International Conference on Email and Anti-Spam. (2004-01-24) [2024-03-13]. https://personal.utdallas.edu/~ muratk/courses/dmsec_files/170.pdf. [50] TRAMèR F, ZHANG F, JUELS A, et al. Stealing machine learning models via prediction APIs[C]// Proceedings of the 25th USENIX Security Symposium. Austin: USENIX Association, 2016: 601-618. [51] 纪守领, 杜天宇, 邓水光, 等. 深度学习模型鲁棒性研究综述[J]. 计算机学报, 2022, 45(1): 190-206 JI Shouling, DU Tianyu, DENG Shuiguang, et al. Robustness Certification Research on Deep Learning Models: A Survey[J]. Chinese Journal of Computers, 2022, 45(1): 190-206 [52] BULò S R, BIGGIO B, PILLAI I, et al. Randomized prediction games for adversarial machine learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 28(11): 2466-2478 [53] PAPERNOT N, MCDANIEL P, WU Xi, et al. Distillation as a defense to adversarial perturbations against deep neural networks[C]// 2016 IEEE Symposium on Security and Privacy (SP) . San Jose: IEEE, 2016: 582-597. [54] 王科迪, 易平. 人工智能对抗环境下的模型鲁棒性研究综述[J]. 信息安全学报, 2020, 5(3): 13-22 WANG Kedi, YI Ping. A Survey on Model Robustness under Adversarial Example[J]. Journal of Cyber Security, 2020, 5(3): 13-22 [55] LING X, JI SL, ZOU JX, et al. Deepsec: A uniform platform for security analysis of deep learning model[C]//2019 IEEE Symposium on Security and Privacy (SP) . San Francisco: IEEE, 2019: 673-690. [56] LUO B, LIU Y, WEI L, et al. Towards imperceptible and robust adversarial example attacks against neural networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018, 32 (1) : 1652-1659. [57] WONG E, SCHMIDT F, KOLTER Z. Wasserstein adversarial examples via projected sinkhorn iterations[C]//International Conference on Machine Learning. Maastricht: ML Research Press, 2019: 6808-6817. [58] 刘俊旭, 孟小峰. 机器学习的隐私保护研究综述[J]. 计算机研究与发展, 2020, 57(2): 346-362 LIU Junxu, MENG Xiaofeng. Survey on privacy-preserving machine learning[J]. Journal of Computer Research and Development, 2020, 57(2): 346-362 [59] YAO A C. How to generate and exchange secrets[C]//27th Annual Symposium on Foundations of Computer Science (SFCS 1986) . Piscataway: IEEE, 1986: 162-167. [60] RIVEST R L, ADLEMAN L, DERTOUZOS M L. On data banks and privacy homomorphisms[J]. Foundations of Secure Computation, 1978, 411: 169-180 [61] DWORK C, MCSHERRY F, NISSIM K, et al. Calibrating noise to sensitivity in private data analysis[C]//TCC’06: Proceedings of the Third conference on Theory of Cryptography. Berlin: Springer, 2006: 265-284. [62] CHAUDHURI K, MONTELEONI C. Privacy-preserving logistic regression[J]. Advances in Neural Information Processing Systems, 2008, 21: 289-298 [63] SONG S, CHAUDHURI K, SARWATE A D. Stochastic gradient descent with differentially private updates[C]//2013 IEEE Global Conference on Signal and Information Processing. Piscataway: IEEE, 2013: 245-248. [64] ZHAO Y, WANG Y, DERR T. Fairness and explainability: Bridging the gap towards fair model explanations[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 11363-11371. [65] NANDA V, DOOLEY S, SINGLA S, et al. Fairness through robustness: Investigating robustness disparity in deep learning[C]//Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. New York: ACM, 2021: 466-477. [66] JIA YZ, FRANK E, PFAHRINGER B, et al. Studying and exploiting the relationship between model accuracy and explanation quality[C]//Machine Learning and Knowledge Discovery in Databases. Research Track: European Conference. Berlin: Springer, 2021: 699-714. [67] BERK R, HEIDARI H, JABBARI S, et al. A convex framework for fair regression[EB/OL]. (2017-06-07) [2024-03-13]. https://doi.org/10.48550/arXiv.1706.02409. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||