[1] DING X, PUTERMAN M L, BISI A. The censored newsvendor and the optimal acquisition of information[J]. Operations Research, 2002, 50(3): 517-527 [2] QIN Y, WANG R, VAKHARIA A J, et al. The newsvendor problem: review and directions for future research[J]. European Journal of Operational Research, 2011, 213(2): 361-374 [3] HUBER J, MÜLLER S, FLEISCHMANN M, et al. A data-driven newsvendor problem: from data to decision[J]. European Journal of Operational Research, 2019, 278(3): 904-915 [4] CORLU C G, BILLER B, TAYUR S. Driving inventory system simulations with limited demand data: insights from the newsvendor problem[J]. Journal of Simulation, 2019, 13(2): 152-162 [5] PRAK D, TEUNTER R. A general method for addressing forecasting uncertainty in inventory models[J]. International Journal of Forecasting, 2019, 35(1): 224-238 [6] SCARF H E. Some remarks on Bayes solutions to the inventory problem[J]. Naval Research Logistics Quarterly, 1960, 7(4): 591-596 [7] AZOURY K S. Bayes solution to dynamic inventory models under unknown demand distribution[J]. Management Science, 1985, 31(9): 1150-1160 [8] SCARF H E. A min-max solution of an inventory problem[M]. Santa Monica: Rand Corporation, 1957. [9] PERAKIS G, ROELS G. Regret in the newsvendor model with partial information[J]. Operations Research, 2008, 56(1): 188-203 [10] LEVI R, PERAKIS G, UICHANCO J. The data-driven newsvendor problem: new bounds and insights[J]. Operations Research, 2015, 63(6): 1294-1306 [11] TAKEUCHI I, LE Q V, SEARS T D, et al. Nonparametric quantile estimation[J]. Journal of Machine Learning Research, 2006, 7: 1231-1264 [12] NAHMIAS S. Demand estimation in lost sales inventory systems[J]. Naval Research Logistics, 1994, 41(6): 739-757 [13] AGRAWAL N, SMITH S A. Estimating negative binomial demand for retail inventory management with unobservable lost sales[J]. Naval Research Logistics, 1996, 43(6): 839-861 [14] LU X, SONG J, ZHU K. Analysis of perishable-inventory systems with censored demand data[J]. Operations Research, 2008, 56(4): 1034-1038 [15] HUH W T, RUSMEVICHIENTONG P. A nonparametric asymptotic analysis of inventory planning with censored demand[J]. Mathematics of Operations Research, 2009, 34(1): 103-123 [16] HUH W T, LEVI R, RUSMEVICHIENTONG P, et al. Adaptive data-driven inventory control with censored demand based on Kaplan-Meier estimator[J]. Operations Research, 2011, 59(4): 929-941 [17] SACHS A L, MINNER S. The data-driven newsvendor with censored demand observations[J]. International Journal of Production Economics, 2014, 149: 28-36 [18] LARIVIERE M A, PORTEUS E L. Stalking information: Bayesian inventory management with unobserved lost sales[J]. Management Science, 1999, 45(3): 346-363 [19] LEVI R, ROUNDY R O, SHMOYS D B. Provably near-optimal sampling-based policies for stochastic inventory control models[J]. Mathematics of Operation Research, 2007, 32(4): 821-839. [20] ZHENG M, WU K, SHU Y. Newsvendor problems with demand forecast updating and supply constraints[J]. Computers & Operations Research, 2016, 67: 193-206 [21] GODFREY G A, POWELL W B. An adaptive, distribution-free algorithm for the newsvendor problem with censored demands, with applications to inventory and distribution[J]. Management Science, 2001, 47(8): 1101-1112 [22] CARRIZOSA E, OLIVARES-NADAL A V, RAMÍREZ-COBO P. Robust newsvendor problem with autoregressive demand[J]. Computers & Operations Research, 2016, 68: 123-133 [23] TAUBE F, MINNER S. Data-driven assignment of delivery patterns with handling effort considerations in retail[J]. Computers & Operations Research, 2018, 100: 379-393 [24] ÇIMEN M, KIRKBRIDE C. Approximate dynamic programming algorithms for multidimensional flexible production-inventory problems[J]. International Journal of Production Research, 2017, 55(7): 2034-2050 [25] AKCAY A, CORLU C G. Simulation of inventory systems with unknown input models: a data-driven approach[J]. International Journal of Production Research, 2017, 55(19): 5826-5840 [26] GIANNOCCARO I, PONTRANDOLFO P. Inventory management in supply chains: a reinforcement learning approach[J]. International Journal of Production Economics, 2002, 78(2): 153-161 [27] HEKIMOĞLU M, VAN DER LAAN E, DEKKER R. Markov-modulated analysis of a spare parts system with random lead times and disruption risks[J]. European Journal of Operational Research, 2018, 269(3): 909-922 [28] KARA A, DOGAN I. Reinforcement learning approaches for specifying ordering policies of perishable inventory systems[J]. Expert Systems with Applications, 2018, 91: 150-158 [29] LIU J, PANG Z, QI L. Dynamic pricing and inventory management with demand learning: a Bayesian approach[J]. Computers & Operations Research, 2020, 124: 105078 [30] PEREZ H D, HUBBS C D, LI C, et al. Algorithmic approaches to inventory management optimization[J]. Processes, 2021, 9(1): 102 [31] BAN G Y, RUDIN C. The big data newsvendor: practical insights from machine learning[J]. Operations Research, 2019, 67(1): 90-108 [32] BEUTEL A L, MINNER S. Safety stock planning under causal demand forecasting[J]. International Journal of Production Economics, 2012, 140(2): 637-645 [33] OROOJLOOYJADID A, SNYDER L V, TAKÁČ M. Applying deep learning to the newsvendor problem[J]. IISE Transactions, 2020, 52(4): 444-463 [34] ZHANG Y, GAO J. Assessing the performance of deep learning algorithms for newsvendor problem[C]//Neural Information Processing: 24th, International Conference, ICONIP 2017. Cham: Springer, 2017: 912-921. [35] BERTSIMAS D, KALLUS N. From predictive to prescriptive analytics[J]. Management Science, 2020, 66(3): 1025-1044 [36] BERTSIMAS D, MCCORD C. From predictions to prescriptions in multistage optimization problems[EB/OL]. (2019-04-26)[2023-12-26]. https://arxiv.org/abs/1904.11637. [37] CLAUSEN J B B, LI H. Big data driven order-up-to level model: application of machine learning[J]. Computers & Operations Research, 2022, 139: 105641 [38] CHEUNG W C, SIMCHI-LEVI D. Sampling-based approximation schemes for capacitated stochastic inventory control models[J]. Mathematics of Operations Research, 2019, 44(2): 668-692 [39] CAO Y, SHEN Z. Quantile forecasting and data-driven inventory management under nonstationary demand[J]. Operations Research Letters, 2019, 47(6): 465-472 [40] QIU R, SUN Y, FAN Z, et al. Robust multi-product inventory optimization under support vector clustering-based data-driven demand uncertainty set[J]. Soft Computing, 2020, 24(9): 6259-6275 [41] TAYLOR J W. A quantile regression approach to estimating the distribution of multiperiod returns[J]. The Journal of Derivatives, 1999, 7(1): 64-78 [42] ZHANG L, YANG J, GAO R. Optimal robust policy for feature-based newsvendor[J]. Management Science, 2024, 70(4): 2315-2329. [43] KARLIN S. Dynamic inventory policy with varying stochastic demands[J]. Management Science, 1960, 6(3): 231-258 [44] IGLEHART D L. The dynamic inventory problem with unknown demand distribution[J]. Management Science, 1964, 10(3): 429-440 [45] LOVEJOY W S. Myopic policies for some inventory models with uncertain demand distributions[J]. Management Science, 1990, 36(6): 724-738 [46] BERTSIMAS D, THIELE A. A robust optimization approach to inventory theory[J]. Operations Research, 2006, 54(1): 150-168 [47] GEORGHIOU A, TSOUKALAS A, WIESEMANN W. Robust dual dynamic programming[J]. Operations Research, 2019, 67(3): 813-830 [48] 孙月, 邱若臻. 交叉销售下基于支持向量聚类的数据驱动多产品库存鲁棒优化模型[J]. 中国管理科学, 2022, 30(2): 156-168 SUN Yue, QIU Ruozhen. Support vector clustering-based data driven robust optimization model for multi-product inventory problem with cross-selling[J]. Chinese Journal of Management Science, 2022, 30(2): 156-168 [49] 邱若臻, 苑红涛, 黄小原. 基于似然估计的零售商库存鲁棒均值–风险模型[J]. 中国管理科学, 2016, 24 (8) : 123-131. QIU Ruozhen, YUAN Hongtao, HUANG Xiaoyuan. Robust mean-risk model for retailer inventory problem based on likelihood estimation[J]. Chinese Journal of Management Science, 2016, 24 (8) : 123-131. [50] CHEN Z, XIE W. Regret in the newsvendor model with demand and yield randomness[J]. Production and Operations Management, 2021, 30(11): 4176-4197 [51] LU M, SHEN Z. A review of robust operations management under model uncertainty[J]. Production and Operations Management, 2021, 30(6): 1927-1943 [52] KLEYWEGT A J, SHAPIRO A, HOMEM-DE-MELLO T. The sample average approximation method for stochastic discrete optimization[J]. SIAM Journal on Optimization, 2002, 12(2): 479-502 [53] HALMAN N. Provably near-optimal approximation schemes for implicit stochastic and sample-based dynamic programs[J]. INFORMS Journal on Computing, 2020, 32(4): 1157-1181 [54] CANNON A J. Quantile regression neural networks: implementation in R and application to precipitation downscaling[J]. Computers & Geosciences, 2011, 37(9): 1277-1284 [55] NGUYEN T T, NGUYEN N D, NAHAVANDI S. Deep reinforcement learning for multiagent systems: a review of challenges, solutions, and applications[J]. IEEE Transactions on Cybernetics, 2020, 50(9): 3826-3839 [56] WANG J, LI X, ZHU X. Intelligent dynamic control of stochastic economic lot scheduling by agent-based reinforcement learning[J]. International Journal of Production Research, 2012, 50(16): 4381-4395 [57] ZHANG Y, VOVK V, ZHANG W. Probability-free solutions to the non-stationary newsvendor problem[J]. Annals of Operations Research, 2014, 223(1): 433-449 [58] WANG R, GAN X, QIU T, et al. An extended weak aggregating algorithm for a two dimensional data-driven multi-stage newsvendor problem[J]. Expert Systems with Applications, 2024, 238: 121992 [59] BOOKBINDER J H, LORDAHL A E. Estimation of inventory re-order levels using the bootstrap statistical procedure[J]. IIE Transactions, 1989, 21(4): 302-312 [60] BURNETAS A N, SMITH C E. Adaptive ordering and pricing for perishable products[J]. Operations Research, 2000, 48(3): 436-443 [61] POWELL W, RUSZCZYŃSKI A, TOPALOGLU H. Learning algorithms for separable approximations of discrete stochastic optimization problems[J]. Mathematics of Operations Research, 2004, 29(4): 814-836
|