[1] 高金吉. 人工自愈概论[J]. 机械工程学报, 2021, 57(2): 1-10. GAO Jinji. Overview on artificial self-recovery[J]. Journal of Mechanical Engineering, 2021, 57(2): 1-10. [2] 林京. 机器信息学: 机械产品智能化的学科支撑[J]. 机械工程学报, 2021, 57(2): 11-20. LIN Jing. Machinery informatics: a fundamental discipline to intelligent machinery[J]. Journal of Mechanical Engineering, 2021, 57(2): 11-20. [3] KAN M S, TAN A C, MATHEW J. A review on prognostic techniques for non-stationary and non-linear rotating systems [J]. Mechanical Systems and Signal Processing, 2015, 62: 1-20. [4] 苗永浩, 石惠芳, 李晨辉, 等. 谐波特征模式分解方法在轴承故障诊断中的应用[J]. 机械工程学报, 2023, 59(21): 234-244. MIAO Yonghao, SHI Huifang, LI Chenhui, et al. Harmonic feature mode decomposition and its application for bearing fault diagnosis[J]. Journal of Mechanical Engineering, 2023, 59(21): 234-244. [5] 权振亚, 张学良, 李鹏程. CS自适应随机共振与ITD相结合的轴承弱故障诊断[J]. 工业工程, 2023, 26(1): 136-145. QUAN Zhenya, ZHANG Xueliang, LI Pengcheng. Weak fault diagnosis of bearing based on cuckoo adaptive stochastic resonance and ITD[J]. Industrial Engineering Journal, 2023, 26(1): 136-145. [6] RANDALL R B, ANTONI J. Rolling element bearing diagnostics—a tutorial[J]. Mechanical Systems and Signal Processing, 2011, 25(2): 485-520. [7] SAWALHI N, RANDALL R B, ENDO H. The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis[J]. Mechanical Systems and Signal Processing, 2007, 21(6): 2616-2633. [8] MCDONALD G L, ZHAO Q, ZUO M J. Maximum correlated kurtosis deconvolution and application on gear tooth chip fault detection[J]. Mechanical Systems and Signal Processing, 2012, 33: 237-255. [9] MIAO Y, ZHAO M, LIN J, et al. Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2017, 92: 173-195. [10] MIAO Y, WANG J, ZHANG B, et al. Practical framework of Gini index in the application of machinery fault feature extraction[J]. Mechanical Systems and Signal Processing, 2022, 165: 108333. [11] QIN L, YANG G, SUN Q. Maximum correlation Pearson correlation coefficient deconvolution and its application in fault diagnosis of rolling bearings[J]. Measurement, 2022, 205: 112162. [12] HE L, YI C, WANG D, et al. Optimized minimum generalized Lp/Lq deconvolution for recovering repetitive impacts from a vibration mixture[J]. Measurement, 2021, 168: 108329. [13] ZHANG Z, WANG J, LI S, et al. Fast nonlinear blind deconvolution for rotating machinery fault diagnosis[J]. Mechanical Systems and Signal Processing, 2023, 187: 109918. [14] WANG X, ZHANG S, ZHU L, et al. Research on fast negative entropy deconvolution of anti-suppressive jamming in carrier-free ultra-wideband measuring system[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 6503012. [15] MENG Z, ZHANG Y, ZHU B, et al. Research on rolling bearing fault diagnosis method based on ARMA and optimized MOMEDA[J]. Measurement, 2022, 189: 110465. [16] ZHANG Z, WANG J, Li S, et al. Fast nonlinear convolutional sparse filtering: a novel early-stage fault diagnosis method of rolling bearing[J]. Measurement, 2023, 207: 112347.
|