[1]李伯虎.复杂产品制造信息化的重要技术——复杂产品集成制造系统[J].中国制造业信息化,2006(7):19-23.
Li Bohu.Important technical of complex products manufacturing information complex products integrated manufacturing system[J].Manufacture Information Engineering of China, 2006(7):19-23.
[2]宋晓宇,刘锋,孙焕良.基于粗糙集的聚类算法中阈值自动选取[J].系统工程与电子技术,2010,32(1):192-194.
Song Xiaoyu,Liu Feng,Sun Huanliang. Autonomous threshold selection based on rough set theory in clustering algorithm[J].Systems Engineering and Electronics, 2010,32(1):192-194.
[3]Yan W,He Z,Tian W M.The application of relief algorithm for identifying CTQ in complex products[C].2011 2nd IEEE International Conference on Emergency Management and Management Sciences.Beijing:BUCT,2011:459-460.
[4]Sotiris K, Dimitris K, Panayiotis P. Handling imbalanced datasets: A Review[J]. Robotics and Computer integrated Manufacturing, 2005, 21(2): 559-567.
[5]Don J Lee, Anna C Thornton, The identification and use of key characteristics in the product development process[C]. Proceedings of the ASME Design Engineering Technical Conferences and Computers in Engineering Conference. California:Irvine,1996: 211-217.
[6]蒋良孝.一种基于信息增益的分类规则挖掘算法[J].中南工业大学学报,2003,34(2):69-71.
Jiang Liangxiao. A classification rule mining algorithm based on the information gain[J].Journal of South University,2003,34(2):69-71.
[7]Japkowicz N,Stephen S. The class imbalance problem: a systematic study[J].Intelligent Data Analysis,2002,6(5):203-231.
[8]Marko R,Igor K.Theoretical and empirical analysis of reliefF and rreliefF[J].Machine Learning,2003,53(6):23-69.
[9]Kubat M, Matwin S.Addressing the curse of imbalanced training sets: onesided selection[C]. Proceedings of the Fourteenth International Conference on Machine Learning. Nashville:Morgan Kaufman,1997:179-186.
[10]Smad F.Retrieving collocation from text:xtract[J].Computational Linguistics,1993,19(1):143-175.
[11]Church K.Word Association norms mutual information and lexicography[J].Computational Linguistics,1990,16(1):22-29.
[12]Elkan C.The Foundations of cost-sensitive learning[C].Proceedings of the 17th International Joint Conference on Artificial Intelligence.San Francisco:Morgan Kaufman,2001:973-978.
[13]Domingos P.MetaCost:a general method for making classifiers cost-sensitive[C].Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego:ACM,1999:155-164.
[14]Fan W,Stolfo S J,Zhang J X.AdaCost: misclassification cost-sensitive boosting[C].Proceedings of the 16th International Conference on Machine Learning.Bled:Morgan Kaufman,1999:97-105.
[15]Murphy P, Aha D.UCIML repository secom dataset[EB/OL].(2008). http:∥archive.ics.uci.edu/ml/machine learning-databases/secom. |