[1]中国钢铁工业协会. 钢材市场需求预测及钢铁工业发展战略的若干建议[J]. 中国钢铁业, 2003(1): 5-11.
China Steel Industry Association. Steel market demand forecast and the strategic development of the steel industry some suggestions[J]. China Steel, 2003(1): 5-11.
[2]吴文东, 吴刚, 魏一鸣, 等. 基于相关系数的钢材需求量组合预测[J]. 中国管理科学, 2008, 16(10): 45-49.
Wu Wen-dong, Wu Gang, Wei Yi-ming, et al. Combination forecasting of steel demand based on the correlation coefficient[J]. Chinese Journal of Management Science, 2008, 16(10): 45-49.
[3]张群, 张积林. 基于数据重心理论进行钢材需求预测[J]. 钢铁, 2004,39(12): 76-78.
Zhang Qun, Zhang Ji-lin. Steel forecasting based on data barycenter theory[J]. Iron and Steel, 2004, 39(12): 76-78.
[4]黄波. 基于面板数据的钢材消费模型估计与预测[J]. 统计与决策, 2009(1): 90-92.
Huang Bo. Based on the panel data of the steel consumption model estimation and prediction[J]. Statistics and decision, 2009(1): 90-92.
[5]黄山,陈晔,汤乐明. 基于贝叶斯向量自回归方法的钢材消费量预测[J]. 统计与决策, 2009(20): 91-93.
Huang Shan, Chen Ye, Tang Le-ming. Based on the Bayesian loud self regression method in steel consumption forecasting[J]. Statistics and decision, 2009(20): 91-93.
[6]邓乃扬,田英杰. 支持向量机:理论、算法与拓展[M]. 北京:科学出版社,2009.
[7]辛治运, 顾明. 基于最小二乘支持向量机的复杂金融时间序列预测[J]. 清华大学学报:自然科学版, 2008, 48(7): 1147.
Xin Zhi-yun, Gu Ming. Complicated financial data time series forecasting analysis based on least square support vector machine[J]. Journal of Tsinghua University:Science & Techhology, 2008, 48(7): 1147.
[8 ] 向昌盛,周子英. 混沌时间序列的支持向量机预测[J]. 统计与决策, 2010 (1): 7-10.
XIiang Chang-sheng, Zhou Zi-ying. Chaotic time series prediction with support vector machine[J]. Statistics and Decision, 2010(1): 7-10.
[9]孟军,孙超. 基于支持向量机的大豆产量预测研究[J]. 数学的实践与认识, 2011, 41(18): 144-149.
Meng Jun, Sun Chao. The study on soybean yield prediction based on support vector machine[J]. Mathematics in Practice and Theory, 2011, 41(18): 144-149.
[10]吴良海. 基于粒子群优化支持向量机的石油需求预测[J]. 计算机仿真, 2010, 27(4): 292-295.
Wu Liang-hai. Prediction of petroleum demand based on SVM optimized by PSO[J]. Computer Simulation, 2010, 27(4): 292-295.
[11]胡风新, 郭红瑾, 孙运芳. 免疫算法理论及应用研究[J]. 计算机与数字工程, 2009, 37(7): 46.
Hu Feng-xin, Guo Hong-jin, Sun Yun-fang. Research on immune algorithm theory and its application[J]. Computer & Digital Engineering, 2009, 37(7): 46.
[12 ]刘芳菊,林睦纲,谭敏生. 基于免疫算法的主动响应策略选择研究[J]. 计算机应用研究, 2011, 28(9): 3535-3538.
Loi Fang-ju, Lin Mu-gang, Tan Min-sheng. Active response strategy selection based on immune algorithm[J]. Application Research of Computers, 2011, 28(9): 3535-3538.
[13]莫宏伟,左兴权. 人工免疫系统[M]. 北京:科学出版社,2009.
[14]Forrest S, Hofmeyr S A. Immunology as information processing[C]. Segel LA, Cohen IR. Design Principles for Immune System & Other Distributed Autonomous Systems. UK: Oxford University,2000: 361.
[15]高家全,何桂霞, 王雨顺. 典型的人工免疫算法性能比较与分析[J]. 计算机工程与应用, 2009, 45(10): 208-210.
Gao Jia-quan, He Gui-xia, Wang Yu-shun. Comparison and analysis with classic artificial immune algorithms on Performance[J]. Computer Engineering and Applications, 2009, 45(10): 208-210. |