[1]郑美凤. 有限需求信息下的间断需求预测及库存控制研究[D]. 上海: 上海大学,2012.ZHENG Meifeng. Intermittent demand forecast and inventory control in the presence of limited historical demand data [D]. Shanghai: Shanghai University, 2012.
[2]EAVES A H C, KINGSMAN B G. Forecasting for the ordering and stockholding of consumable spare parts [J]. Journal of the Operational Research Society,2004,55(4): 431-437.[3]FEENEY G J, SHERBROOKE C C. The (S-1,S) inventory policy under compound Poisson demand[J]. Management Science, 1966,12(5):391-411.
[4]MATHEUS P,GELDERS L. The (R, Q) policy subject to a compound Poisson demand pattern[J]. International Journal of Production Economics, 2000,68(3):307-317.
[5]BABAI M Z,DALLERY J Z Y. Analysis of order-up-to level inventory systems with compound Poisson demand [J]. European Journal of Operational Research, 2011,210(3):552558.
[6]DUNSMUIR W T M, SNYDER R N. Control of inventories with intermittent demand [J]. European Journal of Operational Research, 1989,40(1):16-21.
[7]JANSSEN F,HEUTS R,DE KOK A. On the (R, s, Q) inventory model when demand is modelled as a compound Bernoulli process [J]. European Journal of Operational Research, 1998,104(3):423436.
[8]TEUNTER R H, SYNTETOS A A, BABAI M Z. Determining order-up-to levels under periodic review for compound binomial(intermittend) demand[J]. European Journal of Operational Research, 2010,203(3):619624.
[9]LARSEN C, THORSTENSON A. A comparison between the order and the volume fill rates for a basestock inventory control system under a compound renewal demand process[J]. Journal of the Operational Research Society, 2008,59(6):798-804.〖ZK)〗
[10]GUPTA A K, ZENG W B,WU Y. Probability and statistical models:foundations for problems in reliability and financial mathematics[M]. Boston: Springer Science + Business Media, LLC, 2010.
[11]LARSEN C, THORSTENSON A. The order and volume fill rates in inventory control systems[J]. International Journal of Production Economics, 2014,147:13-19.
[12]LARSEN C, KIESMULLER G P. Developing a closed-form cost expression for an (R, s, nQ) policy where the demand process is compound generalized Erlang [J]. Operations Research Letters, 2007,35(5): 567572.
[13]SAIDANE S, BABAI M Z, AGUIR M S, et al. On the performance of the base-stock inventory system under a compound Erlang demand distribution [J]. Computers & Industrial Engineering, 2013,66(3): 548554.
[14]HABER S E, SITGREAVES R. A methodology for estimating expected usage of repair parts with application to parts with no usage history[J]. Naval Research Logistics Quarterly, 1970, 17(4): 535546.
[15]SILVER E A. Bayesian determination of the reorder point of a slow moving item[J]. Operations Research, 1965, 13(6): 989-997.
[16]SMITH B R, VEMUGANTI R R. A learning model for inventory control of slowmoving items[J]. AIIE Transactions, 1969,1(3): 274-277.
[17]SYNTETOS A A, BOYLAN J E. On the Bias of intermittent demand estimates[J]. International Journal of Production Economics, 2001,71(1): 457-466.
[18]CROSTON J D. Forecasting and stock control for intermittent demands [J]. Journal of the Operational Research Society, 1972, 23(3): 289-303.
[19]LEVNE, SEGERSTEDT A. Inventory control with a modified Croston procedure and Erlang distribution[J]. International Journal of Production Economics, 2004, 90(3): 361-367.
[20]BOYLAN J, SYNTETOS A. The accuracy of a modified Croston procedure[J]. International Journal of Production Economics, 2007,107(2): 511-517.
[21]WILLEMAIN T R, SMART C N, SCHWARZ H F. A new approach to forecasting intermittent demand for service parts inventories[J]. International Journal of Forecasting, 2004, 20(3): 375-387.
[22]ALTAY N, RUDISILL F, LITTERAL L A. Adapting Wright′s modification of Holt′s method to forecasting intermittent demand[J]. International Journal of Production Economics, 2008,111(2): 389-408.
[23]WRIGHT D J. Forecasting data published at irregular time intervals using an extension of Holt′s method[J]. Management Science. 1986, 32(4):499-510.
[24]许绍杰, 张衡, 聂涛, 等. 基于组合预测的间断性需求器材预测[J]. 系统工程与电子技术, 2012, 34(1): 111-114.
XU Shaojie, ZHANG Heng, NIE Tao, et al. Forecasting for materials with intermittent demand based on combined forecasting[J]. Systems Engineering and Electronics, 2012, 34(1): 111-114.
[25]王文. 基于支持向量机的不常用备件需求预测方法研究[D]. 武汉: 华中科技大学,2006.
WANG Wen. Research on support vector machines based forecasting method for rarely used spare parts demand. [D]. Wuhan: Huazhong University of Science and Technology, 2006. [26]DALHART G. Class seasonalitya new approach [C]. Proceedings of 1974 Conference of American Production and Inventory Control Society, October 21-25, 1974, 2nd edn. APICS, Washington, DC, 1974: 11-16.
[27]DEKKER M, VAN DONSELAAR K, OUWEHAND P. How to use aggregation and combined forecasting to improve seasonal demand forecasts[J]. International Journal of Production Economics, 2004,90(2): 151-167.
[28]CANIATO F, KALCHSCHMIDT M, RONCHI S, et al. Clustering customers to forecast demand [J]. Production Planning & Control, 2005, 16(1): 32-43.
[29]SHENSTONE L, HYNDMAN R J. Stochastic models underlying Croston′s method for intermittent demand forecasting[J]. Journal of Forecasting, 2005,24(6): 389-402.
[30]LINDSEY M, PAVUR R. Prediction intervals for future demand of existing products with an observed demand of zero[J]. International Journal of Production Economics, 2009,119(1): 75-89. |