[1]GHARE P, SCHRADER G. A model for exponentially decaying inventory[J]. Journal of Industrial Engineering, 1963, 14(5):238-243.
[2]LIAO H C, TSAI C H, SU C T. An inventory model with deteriorating items under inflation when a delay in payment is permissible[J]. International Journal of Production Economics, 2000, 63(2):207-214.
[3]SANA S, CHAUDHURI K. An EOQ model with timedependent demand, inflation and money value for a warehouse enterpriser[J]. Advanced Modeling and Optimization, 2003, 5(2):135-146.
[4]GHOSH S, CHAUDHURI K. An orderlevel inventory model for a deteriorating item with Weibull distribution deterioration, timequadratic demand and shortages[J]. Advanced Modeling and Optimization, 2004, 6(1):21-35.
[5]CHUNG K J, LIAO J J. Lotsizing decisions under trade credit depending on the ordering quantity[J]. Computers & Operations Research, 2004, 31(6):909-928.
[6]HUANG Y F. Economic order quantity under conditionally permissible delay in payments[J]. European Journal of Operational Research, 2007, 176(2):911-924.
[7]PATNAIK V P R, RAO K S. Optimal ordering policies of an inventory model for deteriorating items with demand inversely proportional to the on-hand inventory[J]. International Journal of Operational Research, 2012, 13(2):200-218.
[8]YANG C T, OUYANG L Y, WU K S, et al. Optimal ordering policy in response to a temporary sale price when retailer′s warehouse capacity is limited[J]. European Journal of Industrial Engineering, 2012, 6(1):26-49.
[9]TRIPATHI R, TOMAR S S. Optimal order policy for timedependent deteriorating items in response to temporary price discount linked to order quantity[J]. Applied Mathematical Sciences, 2013, 58(7):2869-2878.
[10]闵杰, 徐小明, 张家精, 曹宗宏. 等级信用支付策略下变质性产品的库存优化模型[J]. 运筹与管理, 2014,23(6):29-36.
MIN J, XU X M, ZHANG J J, et al. Inventory optimization model for deteriorating items under grade trade credit policy[J]. Operations Research and Management Science, 2014,23(6):29-36.
[11]MECA A, TIMMER J, GARCAJURADO I, et al. Inventory games[J]. European Journal of Operational Research, 2004,156(1):127-139.
[12]MECA A, GARCAJURADO I, BORM P. Cooperation and competition in inventory games[J]. Mathematical Methods of Operations Research, 2003, 57(3):481-493.
[13]MECA A, GUARDIOLA L A, TOLEDO A. Padditive games: a class of totally balanced games arising from inventory situations with temporary discounts[J]. Top, 2007, 15(2):322-340.
[14]冯海荣, 李军, 曾银莲. 易腐品供应链企业联合采购决策与费用分配研究[J]. 系统科学与数学, 2011,31(11):1454-1466.
FENG H R, LI J, ZENG Y L. Study on collaborative purchasing and cost allocation problem in supply chains with perishable products[J]. Journal of Systems Science and Mathematical Sciences, 2011,31(11): 1454-1466.
[15]FIESTRAS-JANEIRO M, GARCIA-JURADO I, MECA A, et al. Cost allocation in inventory transportation systems[J]. Top, 2012, 20(2):397-410.
|