[1] 杨玉恭, 窦秋芳. 威布尔分布形状参数b对试验特征寿命Nn及可靠性寿命N95的影响研究[J]. 结构强度研究, 2012(1): 11-14. YANG Yugong, DOU Qiufang. The research on Shape parameter b of Weibull distribution influence on test characteristics life Nn and reliability life N95/5[J]. Structural Strength Study, 2012 (1): 11-14. [2] ABBASI B, JAHROMI A E. Estimating the parameters of Weibull distribution using simulated annealing algorithm[J]. Applied Mathematics & Computation, 2006, 183(1): 85-93. [3] TOUW A E. Bayesian estimation of mixed Weibull distributions[J]. Reliability Engineering & System Safety, 2009, 94(2): 463-473. [4] NELSON W. Weibull analysis of reliability data with few or no failures[J]. Journal of Quality Technology, 1985, 17(3): 140-146. [5] 刘海涛, 张志华. 威布尔分布无失效数据的Bayes可靠性分析[J]. 系统工程理论与实践, 2008, 28(11): 103-108. LIU Haitao, ZHANG Zhihua. Bayes reliability analysis of zero failure data for Weibull distribution. [J]. Systems Engineering-Theory & Practice, 2008, 28 (11): 103-108. [6] 汤银才, 侯道燕. 三参数Weibull分布参数的Bayes估计[J]. 系统科学与数学, 2009, 29(1): 109-115. TANG Yincai, HOU Daoyan. Bayes estimation of the parameters of the three parameter Weibull distribution [J]. systems science and mathematics, 2009, 29 (1): 109-115. [7] WAIS P. Two and three-parameter Weibull distribution in available wind power analysis[J]. Renewable Energy, 2017, 103: 15-29. [8] BUTTON K S, IOANNIDIS J P, MOKRYSZ C, et al. Power failure: why small sample size undermines the reliability of neuroscience. [J]. Nature Reviews Neuroscience, 2013, 14(5): 365-76. [9] NAGATSUKA H, Balakrishnan N. An efficient method of parameter and quantile estimation for the three-parameter weibull distribution based on statistics invariant to unknown location parameter[J]. Journal of Statistical Computation & Simulation, 2015, 142(7): 1-19. [10] 刘飞, 张为华. 三参数威布尔分布的Bayes参数估计方法研究[C]//中国航空学会航空动力分会火箭发动机专业委员会2006年学术年会. 2006. [11] 邓聚龙. 灰色系统理论教程[M]. 武汉: 华中理工大学出版社, 1990. [12] 李芷筠, 戴志辉, 焦彦军. 小样本失效数据下保护可靠性的贝叶斯-蒙特卡罗评估方法[J]. 电力系统及其自动化学报, 2016, 28(5): 23-27. LI Zhiyun, DAI Zhihui, JIAO Yanjun. Bayesian Monte Carlo evaluation method for protection reliability under small sample failure data [J]. proceedings of the Chinese society of power systems and automation, 2016, 28 (5): 23-27. [13] RAJABALINEJAD M. Bayesian Monte Carlo method[J]. Reliability Engineering & System Safety, 2010, 95(10): 1050-1060. [14] 贾现召, 张涛, 赵海莲, 等. 截尾时间下数控机床可靠性分析的灰色模型法[J]. 河南科技大学学报: 自然科学版, 2013, 34(4): 12-16. JIA Xianzhao, ZHANG Tao, ZHAO Hailian, et al. The grey model method to analysis the reliability of CNC machine tool of the censored time[J]. Journal of Henan University of Science and Technology: Natural Science Edition, 2013, 34 (4): 12-16. [15] 郑荣跃, 严剑松. 威布尔分布参数估计新方法研究[J]. 机械强度, 2002, 24(4): 599-601. ZHENG Rongyue, YAN Jiansong. Study on a new method for parameter estimation of Weibull distribution [J]. Mechanical Strength, 2002, 24 (4): 599-601. [16] DAI Z, WANG Z, JIAO Y. Bayes Monte-Carlo assessment method of protection systems reliability based on small failure sample data[J]. IEEE Transactions on Power Delivery, 2014, 29(4): 1841-1848. [17] 刘方亮. 核电站小样本数据贝叶斯处理方法研究[D]. 北京: 清华大学, 2010. LIU Fangliang. Study on Bayesian method for small sample data processing of nuclear power plant [D]. Tsinghua University, 2010. [18] 郑锐. 三参数威布尔分布参数估计及在可靠性分析中的应用[J]. 振动与冲击, 2015(5): 78-81. ZHENG Rui. Parameter estimation of three parameter Weibull distribution and its application in reliability analysis [J]. vibration and shock, 2015 (5): 78-81. [19] 方志强, 高连华. 三参数威布尔分布在寿命分析中的参数估计[J]. 装甲兵工程学院学报, 2001, 15(2): 70-74. FANG Zhiqiang, GAO Lianhua. Three parameters of Weibull distribution in life analysis of the estimation [J]. Journal of The Academy of Armored Forces Engineering, 2001, 15 (2): 70-74. [20] 刘爱民, 刘有恒. 关于可修复系统的MTBF和MTTR[J]. 电子学报, 1998, 26(1): 70-72. LIU Aimin, LIU Youheng. MTBF and MTTR for repairable systems[J], 1998, 26 (1): 70-72.
|