[1] HOTELLING H. Multivariate quality control-illustrated by the air testing of sample bombsights[M]//EISENHART C, HASTAY M W, WALLIS W A. Techniques of statistical analysis. New York: McGraw Hill, 1947: 111-184. [2] LOWRY C A, WOODALL W H, CHAMP C W, et al. A multivariate exponentially weighted moving average control chart[J]. Technometrics, 1992, 34(1): 46-53 [3] CROSIER R B. Multivariate generalizations of cumulative sum quality-control schemes[J]. Technometrics, 1988, 30(3): 291-303 [4] MAKIS V. Multivariate Bayesian control chart[J]. Operations Research, 2008, 56(2): 487-496 [5] QIU P. Introduction to statistical process control[M]. Boca Raton, FL: CRC Press, 2014. [6] QIU P. Some perspectives on nonparametric statistical process control[J]. Journal of Quality Technology, 2018, 50(1): 49-65 [7] BORROR C M, MONTGOMERY D C, RUNGER G C. Robustness of the EWMA control chart to non-normality[J]. Journal of Quality Technology, 1999, 31(3): 309-316 [8] STOUMBOS Z G, SULLIVAN J H. Robustness to non-normality of the multivariate EWMA control chart[J]. Journal of Quality Technology, 2002, 34(3): 260-276 [9] TESTIK M C, RUNGER G C, BORROR C M. Robustness properties of multivariate EWMA control charts[J]. Quality and Reliability Engineering International, 2003, 19(1): 31-38 [10] QIU P, LI Z. Distribution-free monitoring of univariate processes[J]. Statistics and Probability Letters, 2011, 81(12): 1833-1840 [11] LIU R Y. Control charts for multivariate processes[J]. Publications of the American Statistical Association, 1995, 90(432): 1380-1387 [12] HAWKINS D M. MABOUDOU-TCHAO E M. Self-starting multivariate exponentially weighted moving average control charting[J]. Technometrics, 2007, 49(2): 199-209 [13] DENG H, RUNGER G, TUV E. System monitoring with real-Time contrasts[J]. Journal of Quality Technology, 2012, 44(1): 9-27 [14] LI J, ZHANG X, JESKE D R. Nonparametric multivariate cusum control charts for location and scale changes[J]. Journal of Nonparametric Statistics, 2013, 25(1): 1-20 [15] SUN R, TSUNG F. A Kernel-distance-based multivariate control chart using support vector methods[J]. International Journal of Production Research, 2003, 41(13): 2975-2989 [16] QIU P. Distribution-free multivariate process control based on log-linear modeling[J]. IIE Transactions, 2008, 40(7): 664-677 [17] ZOU C, TSUNG F. A multivariate sign EWMA control chart[J]. Technometrics, 2011, 53(1): 84-97 [18] SULLIVAN J H, JONES L A. A self-starting control chart for multivariate individual observations[J]. Technometrics, 2002, 44(1): 24-33 [19] ZOU C, JIANG W, TSUNG F. A lasso-based diagnostic framework for multivariate statistical process control[J]. Technometrics, 2011, 53(3): 297-309 [20] ZOU C, WANG Z, TSUNG F. A spatial Rank-based multivariate EWMA control chart[J]. Naval Research Logistics, 2012, 59(2): 91-110 [21] CHEN N, ZI X, ZOU C. A Distribution-free multivariate control chart[J]. Technometrics, 2015, 58(4): 448-459 [22] BICKEL P J. A distribution free version of the Smirnov two sample test in the p-variate case[J]. The Annals of Mathematical Statistics, 1969, 40(1): 1-23 [23] MUKHERJEE A, CHAKRABORTI S. A distribution-free control chart for the joint monitoring of location and scale[J]. Quality & Reliability Engineering International, 2012, 28(3): 335-352 [24] BOONE J M, CHAKRABORTI S. Two simple Shewhart-type multivariate nonparametric control charts[J]. Applied Stochastic Models in Business and Industry, 2012, 28(2): 130-140 [25] ZHOU M, ZI X, GENG W, et al. A distribution-free multivariate change-point model for statistical process control[J]. Communications in Statistics-Simulation and Computation, 2015, 44(8): 1975-1987 [26] LI Z, DAI Y, WANG Z. Multivariate change point control chart based on data depth for phase I analysis[J]. Communications in Statistics-Simulation and Computation, 2014, 43(6): 1490-1507 [27] CHOWDHURY S, MUKHERJEE A, CHAKRABORTI S. A new distribution-free control chart for joint monitoring of unknown location and scale parameters of continuous distributions[J]. Quality and Reliability Engineering International, 2014, 30(2): 191-204 [28] BISWAS M, MUKHOPADHYAY M, GHOSH A K. A distribution-free two-sample run test applicable to high-dimensional data[J]. Biometrika, 2014, 101(4): 913-926 [29] NELSON P R, STEPHENSON P L. Runs tests for group control charts[J]. Communications in Statistics, 1996, 25(11): 2739-2765 [30] NELSON L S. Supplementary runs tests for Np control charts[J]. Journal of Quality Technology, 1997, 29(2): 225-227 [31] INAGAKI J, HASEYAMA M, KITAJIMA H. A new genetic algorithm for routing the shortest route via several designated points[C]. IEEE International Symposium on Circuits & Systems, Sydney: Institute of Electrical and Electronics Engineers Inc., 2001. [32] MOHEMMED A W, SAHOO N C, GEOK T K. Solving shortest path problem using particle swarm optimization[J]. Applied Soft Computing, 2008, 8(4): 1643-1653 [33] EUSUFF M, LANSEY K, PASHA F. Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization[J]. Engineering Optimization, 2006, 38(2): 26 [34] MOOD A M. The distribution theory of runs[J]. Annals of Mathematical Statistics, 1940, 11(4): 367-392 [35] MICHAEL M. UCI machine learning repository[DB/OL]. (2008-11-19)[2019-04-01]. http://archive.ics.uci.edu/ml.
|