基于代理模型和改进MOPSO的比例电磁铁结构参数多目标优化

    Multi-objective Optimisation Design of Proportional Solenoid Structural Parameters Based on Agent Model and Improved MOPSO

    • 摘要: 传统的比例电磁铁结构设计方法基于有限元仿真技术实现,通常需要高昂的计算资源与时间。针对上述问题,本文提出一种结合代理模型和改进多目标粒子群优化算法(multi-objective particle swarm optimization, MOPSO)的参数设计方法。首先,分析比例电磁铁的设计要求并定义多目标优化模型。在模型构建过程中,隔磁环前倾角、导套壁厚、径向气隙长度、推杆孔半径、动铁长度、隔磁环底宽为设计变量,最大化平均电磁力和最小化动铁体积为优化目标。然后,基于鲸鱼优化算法和最小二乘支持向量回归模型构建静态电磁力的代理模型,提升设计过程中的计算效率。最后,基于惯性权重和学习因子的动态更新策略改进传统多目标优化粒子群算法,获得满足条件的设计参数非劣解集。经过优化计算,优化后平均电磁力提高约10.84%,体积减少约6.07%。结果证明了该方法的可行性和实用性。

       

      Abstract: Traditional proportional solenoid design methods rely on finite element simulations, requiring significant computational resources and time. To address these issues, this paper proposes a parametric design method that combines an agent model with an improved multi-objective particle swarm optimization (MOPSO) algorithm. The design variables include the spacer ring's front inclination angle, guide sleeve wall thickness, radial air gap length, actuator bore radius, moving iron length, and spacer ring bottom width. The optimization objectives are to maximize average electromagnetic force and minimize moving iron volume. An agent model for static electromagnetic force, based on the whale optimization algorithm and LSSVR enhances computational efficiency. The traditional MOPSO algorithm is improved with a dynamic updating strategy for inertia weights and learning factors to achieve a non-inferior solution set. Post-optimization, the average electromagnetic force increased by 10.84%, and the volume decreased by 6.07%, demonstrating the feasibility and practicality of the proposed method.

       

    /

    返回文章
    返回