参数分布未知的生产过程质量监控

    Quality Monitoring of Production Process with Unknown Parameter Distribution

    • 摘要: 现代工业的发展要求工厂在多品种、大小批量混合生产的灵活模式下,研究精准的实时质量监控方法以应对频繁工艺调整带来的质量波动风险,确保产品质量的一致性。本研究旨在结合统计过程控制方法,实现对参数分布未知的生产过程的质量异常监控。首先构建一种非参数GWMA SR控制图对质量参数进行实时监控。为实现异常模式识别,提出一种基于PCA-RF-GA的模型,进行特征的选取和特征融合后,使用主成分分析方法进行特征降维,使用遗传算法优化的随机森林算法实现了模式分类。在仿真实验中,将不同特征组合、不同分类方法的识别速度与识别精度进行比较,结果显示所提出模式识别方法具有更优的识别效果。将本文方法应用到实际生产的质量监控中,以UO2芯块的直径参数监控为例,证明了结合GWMA SR控制图和PCA-RF-GA模型的质量参数监控方法可以准确快速识别参数分布未知的生产过程中的质量异常波动情况。

       

      Abstract: The development of modern industry demands that factories, amidst a flexible production model involving mixed large and small batch production of multiple varieties, research precise real-time quality monitoring methods to face the risks of quality fluctuations due to frequent process adjustments, ensuring consistent product quality.This study aimed to integrate statistical process control (SPC) for monitoring quality anomalies in processes with unknown parameter distributions. We developed a non-parametric GWMA SR control chart for real-time quality monitoring. For anomaly recognition, we performed feature selection and fusion, reduced feature dimensionality with PCA, and employed GA-optimized RF for pattern classification. Simulation tests compared recognition speed and accuracy across feature combinations and classification methods, demonstrating the proposed method's superior performance. Applied to UO2 pellet diameter monitoring, the combined GWMA SR control chart and PCA-RF-GA model effectively identified abnormal quality fluctuations in actual production, confirming its accuracy and speed in managing processes with unknown parameter distributions.

       

    /

    返回文章
    返回