快递揽件需求区域时空预测方法研究

    Spatiotemporal Forecasting for Regional Express Pickup Demand

    • 摘要: 为了提高快递揽件环节效率,识别高需求区域成为亟待解决的问题。基于区域内兴趣点数据,使用层次图信息最大化(hierarchical graph infomax, HGI)方法得到区域嵌入,将其与历史揽件需求序列作为图多头注意力网络(graph multi-head attention network, GMAN)的输入,提出HGI-GMAN组合模型。在某快递公司真实数据集上的实验结果表明,与5种经典基准模型相比,HGI-GMAN在回归指标(RMSE、R2)和分类指标(macro-F1)上均取得了较好效果。超参数敏感性分析和消融实验验证了所提出组合模型的稳健性和特征的有效性。

       

      Abstract: To improve the efficiency of the parcel pickup process, accurately identifying areas with high demand has become a pressing challenge. Using data of Points of Interest, the hierarchical graph infomax (HGI) method is employed to generate regional embeddings. These embeddings, along with historical pickup demand series, are then input into a graph multi-head attention network (GMAN) for prediction, forming the proposed HGI-GMAN model. Experimental results from a real-world dataset provided by an express company indicate that the HGI-GMAN model outperforms five classical baseline models across various regression (RMSE, R2) and classification (macro-F1) metrics. Additionally, sensitivity analyses and ablation studies confirm the model’s robustness and the effectiveness of its features.

       

    /

    返回文章
    返回