基于深度强化学习的原油短期调度优化

    Optimization of Short-term Scheduling for Crude Oil Operations Based on Deep Reinforcement Learning

    • 摘要: 针对原油短期调度中原油转运速率优化不足的问题,采用分解的思路,将管道转运速率从离散值转换为连续实数值范围,同时提出一种新的决策生成方法,避免对管道转运速率这一连续实数值域的搜索,从而防止算法性能下降。在此基础上,通过合理设计状态特征、动作空间和奖励函数,提出一种基于SAC (soft actor-critic) 算法的原油调度方法。该方法综合考虑了原油短期详细调度中所产生的管道混合成本、罐底混合成本、蒸馏塔的换罐成本、供油罐使用成本以及能耗成本共5个炼油调度目标。最后通过实例分析表明,利用SAC算法所得的调度与已有文献结果对比,单个目标优化效果提升了1.2%~77.8%不等。

       

      Abstract: The problem of suboptimal pipeline transfer rates in short-term crude oil scheduling is addressed using a decomposition approach that converts discrete pipeline transfer rates into a continuous range. A novel decision generation method is introduced to avoid direct search in the continuous transfer rate domain, thereby maintaining algorithm performance. A crude oil scheduling method based on the soft actor-critic (SAC) algorithm is proposed, which considers five objectives: pipeline mixing costs, tank bottom mixing costs, distiller switching tank costs, charging tank usage costs, and energy consumption costs. Case analysis shows that the SAC-based scheduling improves single-objective optimization by 1.2% to 77.8% compared to existing methods.

       

    /

    返回文章
    返回