基于数字孪生的多模式低空物流配送系统设计

    Design of a Digital Twin-Based Multi-modal Low-altitude Logistics Delivery System

    • 摘要: 为解决低空物流运输过程中的运营管理、效能评估等问题,设计了一种基于数字孪生的多模式低空物流配送系统,该系统采用物理系统、仿真引擎、信息系统三层架构,实现了对物流系统的可视化分析与运营成本估算。仿真引擎层依托Unity3D搭建与物理世界等比例的三维仿真环境,实现运输过程可视化与行为复现。信息系统层集成车−机协同配送调度模型,以最小化总配送成本为目标,利用嵌入大邻域搜索的混合粒子群算法对调度方案进行求解,并结合改进型人工势场法对无人机进行航线规划。仿真引擎层对调度方案与无人机航迹进行仿真模拟,根据仿真结果分析物流系统运作过程,随后将可行方案应用于物理系统层。最后,对某办公园区物流场景进行了数字孪生的实现。结果表明,该数字孪生系统在低空物流场景下,可实现高效的车−机协同调度与安全可行的无人机航迹规划,并支持运营成本核算,验证了所提出的多模式低空物流配送系统的有效性。

       

      Abstract: To address operational management and performance evaluation challenges in low-altitude logistics transportation, this paper designs a digital twin-based multimodal low-altitude logistics distribution system. Adopting a three-tier architecture comprising physical systems, simulation engines, and information systems. The simulation engine layer leverages Unity3D to build a 3D simulation environment scaled to match the physical world, achieving visualization of transportation processes and behavioral reproduction. The information system layer integrates a vehicle-drone collaborative delivery scheduling model. Aiming to minimize total delivery costs, it employs a hybrid particle swarm algorithm incorporating large neighborhood search to solve scheduling problems. This is combined with an improved artificial potential field method for drone route planning. The simulation engine layer simulates the scheduled plans and drone trajectories. Based on simulation results, the logistics system's operational processes are analyzed, and feasible solutions are subsequently applied to the physical system layer. A digital-twin implementation for an office-campus scenario demonstrates efficient vehicle-drone coordination and safe, feasible drone trajectories, thereby validating the effectiveness of the proposed system.

       

    /

    返回文章
    返回