基于多模态在线评论的智能互联产品用户观点演化研究

    Research on the User Opinions Evolution of Smart Connected Products Based on Multimodal Online Reviews

    • 摘要: 随着智能互联产品的快速发展,海量用户生成的在线评论已成为理解用户偏好和捕捉市场需求变化的重要信息源。为从高维、异构且具有显著时序特征的在线评论中挖掘用户观点演化规律并指导产品迭代升级,本文构建了一种能够动态捕捉用户需求及观点演化的多模态分析模型。首先,通过融合评论文本与图像特征,采用谱聚类方法构建评论网络的初始节点;随后,将长短期记忆网络(long short-term memory,LSTM)的时序记忆结构与权重学习机制引入DeGroot模型,提出动态DeGroot-LSTM模型,以自适应地更新节点间的影响关系,捕捉观点传播与演化的非线性动态特征。在此基础上,通过分析节点观点及权重矩阵,进一步预测用户对不同产品特征的需求变化及观点演化趋势。基于智能音箱Echo Dot的案例分析结果表明,该模型在各产品特征上的平均MSE、MAE和R2分别为0.00320.02760.8295,显著优于传统静态DeGroot模型及线性Ridge回归模型。研究结果不仅为智能互联产品的优化升级提供了数据驱动的决策依据,也为多模态在线评论视角下的观点演化研究提供了新的方法论框架。

       

      Abstract: With the rapid development of smart connected products, the vast volume of user-generated online reviews has emerged as a vital source for understanding user preferences and tracking market demand dynamics. To uncover the evolution of user opinions from high-dimensional, heterogeneous, and temporally structured reviews, this study develops a multimodal analytical model capable of dynamically capturing user needs and opinion evolution, thereby informing product iteration and enhancement. Specifically, the study first integrates textual and visual features of online reviews to construct the initial nodes of the review network using spectral clustering. Subsequently, a dynamic DeGroot-LSTM model is introduced by embedding the temporal memory structure of long short-term memory (LSTM) networks and a weight-learning mechanism into the DeGroot model, enabling adaptive updates of influence relationships among nodes and capturing the nonlinear dynamics of opinion propagation. By analyzing node opinions and weight matrices, the model enables prediction of user demand and opinion evolution trends across different product features. A case study on the Echo Dot smart speaker demonstrates that the proposed model achieves average MSE, MAE, and R2 values of 0.0032, 0.0276, and 0.8295, respectively, across all features, significantly outperforming the static DeGroot model and the linear Ridge regression model. The findings not only provide data-driven decision support for the optimization of smart connected products but also offer a novel methodological framework for studying opinion evolution from a multimodal online review perspective.

       

    /

    返回文章
    返回