The Impact of Government Subsidies on the Low Carbon Products Selection under Demand Fluctuation
-
摘要:
研究了需求波动下政府补贴对制造商生产低碳产品选择的影响。建立垄断和双寡头两种情形下的古诺博弈模型,分析不同生产策略对制造商产量和利润的影响,得出满足各均衡策略的条件。研究发现:制造商生产策略受政府补贴、市场流失率和市场偏好的影响;政府补贴可引导制造商生产低碳产品,但竞争会削弱补贴对生产低碳产品的激励作用;较大的政府补贴反而会增加碳排放;市场波动程度越大,政府补贴对制造商生产低碳产品的激励作用越弱。
Abstract:The impact of government subsidies on the low carbon products selection under demand fluctuation is studied. Based on Cournot game models with two cases which are monopoly and duopoly, the impact of different production strategies on the output and profit of manufacturers is analyzed, and the conditions that meet the production equilibrium strategy are then proposed. The results show that production strategy is affected by government subsidies, spilling over rate and market preference. Furthermore, government subsidies can motivate the manufacturer to produce low carbon products, and competition will undermine the incentive effect of government subsidies to the production of low carbon products. However, large government subsidies will increase carbon emissions. In addition, the greater the degree of market fluctuation is, the smaller the incentive effect of government subsidies is.
-
Keywords:
- low carbon products /
- demand fluctuation /
- government subsidies /
- production strategy
-
随着工业的迅速发展,二氧化碳排放的增加使得全球的气候遭遇前所未有的挑战。为了降低二氧化碳的排放,政府对生产低碳产品的制造商给予政府补贴。例如美国政府规定制造商生产低碳产品可享受10%~40%的减税额度。而制造商则面临产品生产选择的问题,例如煤炭工业可生产两种类型的煤球,一种是采用普通原材料生产的普通煤球,另一种是采用特殊添加剂等低碳原材料生产的低碳煤球。当不存在政府补贴时,低碳煤球原材料的高采购成本使得制造商不愿主动生产低碳产品;当存在政府补贴时,制造商生产低碳产品变得有利可图。然而市场中对于普通和低碳产品的需求是波动的,因此制造商作出正确的生产策略对自身的利益至关重要。
针对低碳背景下的制造商生产策略,许多学者进行了广泛的研究。Chen等[1]从碳排放和碳交易的角度出发,探究了制造商的最优生产策略与收益之间的关系。Li等[2]研究发现无碳排放约束的最优利润总是大于有碳排放约束时的最优利润。Du等[3]分析了消费者偏好对低碳供应链的影响。Wang[4]研究表明制造商可通过合作来减少碳税对利润的影响。Letmathe等[5]通过对产品生产过程进行细分,提出碳排放阈值和碳税会对制造商产品结构和产量产生影响。Dobos[6]建立arrow-karlin模型,分析了排污权对制造商最优产量的影响。Brauneis等[7]发现较高的碳排放规制促进了制造商对于研发低碳技术的投入。Perino 等[8]认为严格的环境治理制度能够减少制造商污染排放并且可以实现社会福利最优。Krass等[9]发现较低的碳税可以激励制造商采用低碳技术。马常松等[10]研究了存在碳限额下考虑绿色技术投入的制造商生产策略。而学者对于政府补贴的研究早期集中在其他领域。Soyrafe等[11]基于实证数据,发现政府补贴可帮助制造商削减财务危机并激励使用创新技术。刘伟等[12]构建三阶段模型得出政府补贴能够促进制造商R&D投入。刘慧慧[13]探讨了不同补贴额度对回收量的刺激作用。随着低碳经济的发展,众多学者将研究转向政府补贴下的低碳生产。Galinato[14]发现传统碳税政策存在不足,而补贴机制却能将社会福利最大化。张国兴等[15]研究发现市场均衡效率受到作假的伪装成本和期望风险成本的影响。Li等 [16]从正向供应链、再制造闭环供应链和存在补贴的闭环供应链3个角度,探讨了回收价格对于政府实施补贴政策的影响。李友东等[17]研究了低碳供应链减排合作的政府补贴问题。朱庆华[18]从消费者购买意愿角度出发,分析了直接补贴消费者和补贴低碳制造商两种情况对于低碳产品生产的影响。金常飞等[19]研究发现消费者对绿色效用的偏好程度和政府补贴会影响对零售商的利润。
之前的文献大多研究碳排放和碳税对制造商低碳产品生产策略的影响,或是探究政府补贴下的低碳产品生产。但现实中对于不同产品的潜在市场需求是存在波动的,而现有的文献都没有考虑需求波动这一因素对于制造商生产策略的影响。本文针对垄断和双寡头制造商两种情形,着重讨论需求波动下政府补贴对制造商生产策略的影响,研究满足不同生产均衡策略的条件及影响因素。
1. 垄断的制造商
考虑市场中存在垄断的供应商和垄断的制造商。制造商M可选择生产两种部分可替代的产品,使用普通原材料生产的称为“普通产品”,使用低碳原材料生产的称为“低碳产品”。生产过程中使用的原材料不同,所花费的采购成本和政府对制造商的补贴也不同。采用古诺模型,设产品的价格为
p ,销售量为q ,逆需求函数为p=A−q ,其中A 表示潜在市场需求。当制造商生产普通产品时,普通原材料的采购成本为0 且不会获得政府的补贴;当制造商生产低碳产品时,需向供应商采购低碳原材料,采购成本设为w ,且单位产品的政府补贴为b 。普通原材料采购成本为0,采用这一假定有两方面原因:一方面,为了符号的简便和将分析的重点集中在需求波动上;另一方面,如果假设普通原材料成本为w−c ,其中c 为常数,将原材料成本代入模型中,不会改变模型的均衡结果。假设市场的大小为1,市场中的消费者对普通产品和低碳产品的需求是波动的,设市场中消费者偏好普通产品的份额为
a ,a 服从(0,1) 的均匀分布,则低碳产品的市场偏好为1−a 。当制造商生产普通产品时,消费者只能购买到普通产品,市场中原本偏好低碳产品的部分消费者会“流入”普通产品市场,选择购买普通产品。此时普通产品的潜在市场需求为a+γ(1−a) ,而低碳产品的潜在市场需求为0。同理,对于制造商生产低碳产品,此时低碳产品的潜在市场需求为(1−a)+γa 。其中γ 代表市场中偏好缺失产品的消费者转而购买在卖产品的比例,简称市场流失率,是衡量两种产品可替代性的参数,γ 越大说明两种产品的可替代性越大,其中γ∈(0,1) 。1.1 制造商M生产普通产品
普通产品的潜在市场需求为
a+γ(1−a) ,制造商的利润函数为πN=(a+γ(1−a)−qN)qN。 (1) 对式(1)求一阶导函数
∂πN/∂qN=0 得到最优产量q∗N=a+γ(1−a)2。 (2) 其中最优产量恒大于0,将式(2)代入式(1)中得到最优利润
π∗N=(a+γ(1−a))42。 (3) 1.2 制造商M生产低碳产品
生产低碳产品时,需向供应商以单位成本
w 采购低碳原材料,同时由于生产低碳产品政府会对其给予补贴,单位补贴为b ,此时低碳产品的潜在市场需求为(1−a)+γa ,制造商的利润函数为πG=((1−a)+γa−qG+b−w)qG。 (4) 对式(4)求一阶导函数
∂πG/∂qG=0 得最优产量为q∗G=aγ−a+b−w+12。 (5) 供应商的利润为
πS=wqG ,对式中w 求导得到最优采购价格为w∗=aγ−a+b+12。 (6) 将式(6)代入式(5)中,得到最优产量为
q∗G=aγ−a+b+14。 (7) 将式(6)、式(7)代入式(4)中得到最优利润为
π∗G=(aγ−a+b+1)216。 (8) 1.3 比较分析
下面对制造商生产两种产品的最优利润进行比较,令
ΔπN−G=π∗N−π∗G ,其中ΔπN−G=(3aγ−3a−2γ+b+1)(aγ−a−b−2γ−1)16。 (9) ΔπN−G 是关于a 开口向上的二次函数,且判别式Δ>0 ,令ΔπN−G=0 ,求得两根分别为a1=(2γ+b+1)/ (γ−1) 和a2=(b+1−2γ)/(3−3γ) 。下面分析不同市场流失率和补贴情况下厂商根据市场偏好所选择的生产策略,其中a1 恒小于零,下面讨论a2 与1 的大小关系。0<γ≤1/2 时,若b>2−γ ,此时a2>1 ,即有ΔπN−G<0 ,制造商选择生产低碳产品,此时的期望利润为E(πG)=∫10π∗Gda=3b2+3b+1−3b2γ−3bγ2−γ348(1−γ)。 (10) 若
b≤2−γ ,此时0<a2<1 。当0<a≤a2 时,ΔπN−G≤0 ,制造商生产低碳产品;当a2<a<1 时,ΔπN−G>0 ,制造商生产普通产品。此时的期望利润为E(πNG)=∫a20π∗Gda+∫1a2π∗Nda=15b3+69b2+45b+131−116γ31296(1−γ)−(132b−84)γ2+(60b2−24b+60)γ1296(1−γ)。 (11) 1/2<γ<1 时,若b>2−γ ,此时a2>1 ,ΔπN−G<0 ,制造商生产低碳产品,此时的期望利润与式(10)相同。若2γ−1<b≤2−γ ,此时0<a2<1 ,制造商根据市场偏好选择生产策略,当0<a≤a2 时,ΔπN−G≤0 ,制造商选择生产低碳产品;当a2<a<1 时,ΔπN−G>0 ,制造商生产普通产品,此时的期望利润与式(11)相同。若b≤2γ−1 时,a2<0 ,即有ΔπN−G>0 ,制造商生产普通产品,此时的期望利润为E(πN)=∫10π∗Nda=γ2+γ+112。 (12) 命题1 垄断供应商和垄断制造商情形下,制造商会根据市场流失率、补贴大小和市场偏好选择生产策略。
1) 当市场流失率较小时
(0<γ≤1/2) 。(1) 补贴较小,即
b∈(0,2−γ] ,当a∈(0,a2] 时,选择生产低碳产品;当a∈(a2,1) 时,选择生产普通产品。(2) 补贴较大,即b∈(2−γ,∞) ,选择生产低碳产品。2) 当市场流失率较大时
(1/2<γ<1) 。(1) 补贴较小,即
b∈(0,2γ−1] ,选择生产普通产品。(2) 补贴适中,即b∈(2γ−1,2−γ] ,当a∈(0,a2] 时,选择生产低碳产品;当a∈(a2,1) 时,选择生产普通产品。(3) 补贴较大,即b∈(2−γ,∞) ,选择生产低碳产品。表 1 垄断制造商的生产策略Table 1. Monopoly manufacturer's production strategyγ b a 策略 (0,0.5] (0,b2] (0,a2] 低碳 (a2,1) 普通 (b2,∞) (0,1) 低碳 (0.5,1) (0,b1] (0,1) 普通 (b1,b2] (0,a2] 低碳 (a2,1) 普通 (b2,∞) (0,1) 低碳 命题1说明市场流失率较小时,政府补贴会激励制造商生产低碳产品。若补贴较大,高额的补贴会弥补低碳采购成本,生产低碳产品会获得更多的利润;若补贴较小,制造商根据市场偏好
a 选择生产策略。当市场流失率较大时,若补贴较大,制造商生产低碳产品;若补贴适中,制造商根据市场偏好a 选择生产策略;而当补贴较小时,即使市场流失率较大,制造商生产低碳产品会有潜在市场需求波动下的潜在风险收益,但是由于较小的补贴力度,故生产普通产品是其最优策略。命题2 随着市场流失率
γ 的增大,期望利润E(πN) 、E(πG) 、E(πNG) 也随之增大。证明:对
E(πN) 求一阶导函数∂E(πN)/∂γ=γ/6+ 1/12 ,恒大于零,E(πN) 在γ∈(0,1) 单调递增;对E(πG) 求一阶导函数∂E(πG)/∂γ=b/16+γ/24+1/48 ,恒大于零,E(πG) 在γ∈(0,1) 单调递增。对E(πNG) 求一阶导函数得∂E(πNG)∂γ=5b3+3b2+(12γ2−24γ−9)b+8γ3−24γ+29432(γ−1)2。 (13) 分母恒大于零,只需证明分子大于零。令
D1=5b3+3b2+(12γ2−24γ−9)b+8γ3−24γ+29 ,求一阶导函数∂D1/∂γ=(γ−1)(24b+24(γ+1))<0 ,D1 是关于γ 的单调减函数。令γ=0 、γ=1 计算边界值D1(0)=5b3+3b2−9b+29 ,D1(1)=5b3+3b2−21b+13 。b>0 时,D1(0)>0 ,D1(1)≥0 ,得D1 在γ∈(0,1) 时大于零,故∂E(πNG)/∂γ>0 ,所以E(πNG) 在γ∈(0,1) 单调递增。综上,随着市场流失率γ 的增大,期望利润E(πN) 、E(πG) 、E(πNG) 也随之增大。命题2说明垄断制造商情形下,市场流失率的增大导致不同生产策略的期望利润增大。这是因为市场中只存在一种产品,偏好缺失产品的消费者会有一定比例选择购买在售产品,且“流失”的比例越大,在售产品的潜在市场需求就越大,制造商的期望利润就越大。
2. 双寡头制造商
制造商A和B可以生产普通产品或低碳产品,因此共有4个策略组合,分别为
(N,N) 、(N,G) 、(G,N) 、(G,G) ,其中N 代表生产普通产品,G 代表生产低碳产品。2.1 (N, N)策略
制造商A与B都生产普通产品,普通产品的潜在市场需求为
a+γ(1−a) ,制造商A和B的利润函数分别为:{πNNA=(a+γ(1−a)−qNNA−qNNB)qNNA,πNNB=(a+γ(1−a)−qNNA−qNNB)qNNB。 (14) 求一阶导函数
∂πNNA/∂qNNA=0 ,∂πNNB/∂qNNB=0 并联立方程得到最优产量为qNNA=qNNB=γ+a−aγ3。 (15) 将式(15)代入式(14)中得到最优利润为
πNNA=πNNB=19(aγ−γ−a)2。 (16) 2.2 (N, G)策略
制造商A生产普通产品,制造商B生产低碳产品。制造商A垄断普通产品市场,制造商B垄断低碳产品市场。普通产品的潜在市场需求为
a ,低碳产品的潜在市场需求为1−a 。制造商A和B的利润函数分别为:{πNGA=(a−qNGA)qNGA,πNGB=(1−a−qNGB−w+b)qNGB。 (17) 对式中求一阶导函数
∂πNGA/∂qNGA=0 ,∂πNGB/∂qNGB = 0,并根据供应商利润函数πNGS=wqNGB 求得最优采购成本w∗NG=(1−a+b)/2 ,联立方程得到最优产量为:{qNGA=a2,qNGB=1−a+b4。 (18) 将式(18)代入式(17)中得到最优利润为:
{πNGA=a24,πNGB=(1−a+b4)2。 (19) 2.3 (G, N)策略
制造商A生产低碳产品,制造商B生产普通产品。制造商A垄断了低碳产品市场,制造商B垄断普通产品市场。普通产品的潜在市场需求为
a ,低碳产品的潜在市场需求为1−a 。利润函数分别为:{πGNA=(1−a−qGNA−w+b)qGNA,πGNB=(a−qGNB)qGNB。 (20) 对式中求一阶导函数
∂πGNA/∂qGNA=0 ,∂πGNB/∂qGNB= 0,并根据供应商利润函数πNGS=wqGNA 求得最优采购成本w∗GN=(1−a+b)/2 ,联立方程得到最优产量为:{qGNA=1−a+b4,qGNB=a2。 (21) 将式(21)代入式(20)中得到最优利润为:
{πGNA=(1−a+b4)2πGNB=a24。 (22) 2.4 (G, G)策略
制造商A与制造商B都生产低碳产品,低碳产品的潜在市场需求为
1−a+γa ,制造商利润函数分别为:{πGGA=(1−a+aγ−qGGA−qGGB−w+b)qGGA,πGGB=(1−a+aγ−qGGA−qGGB−w+b)qGGB。 (23) 对式中求一阶导函数
∂πGGA/∂qGGA=0 ,∂πGGB/∂qGGB= 0,并根据供应商利润函数πGGS=w(qGGA+qGGB) 求得最优采购成本w∗GG=(1+γa+b−a)/2 ,联立方程得到最优产量为qGGA=qGGB=1+aγ+b−a6。 (24) 将式(24)代入式(23)中得到最优利润为
πGGA=πGGB=(1+aγ+b−a6)2。 (25) 3. 不同策略组合比较分析
根据第2节的具体分析,可得到制造商A与B的收益矩阵,如图1。
3.1 制造商A生产普通产品
制造商A生产普通产品,比较制造商B不同生产策略的利润,令
ΔπNN−NGB=πNNB−πNGB ,将式(16),式(19)代入得ΔπNN−NGB=(4aγ−4γ−7a+3b+3)(4aγ−4γ−a−3b−3)144。 ΔπNN−NGB 是关于a 的二次函数,两根分别为a3=(4γ+3+3b)/(4γ−1) ,a4=(4γ−3−3b)/(4γ−7) 。下面分析不同市场流失率和补贴情况下,厂商根据市场偏好a 所作出的生产策略选择。首先分析市场流失率较小的情况
(0<γ≤1/4) 。此时二次函数开口向上,a3 恒小于0。当补贴较小时(0<b≤4/3) ,此时0<a4<1 ,当0<a≤a4 时,ΔπNN−NGB ≤ 0,制造商B生产低碳产品;a4<a<1 时,ΔπNN−NGB > 0,制造商B生产普通产品。当补贴较大(b>4/3) 时,此时a4>1 ,ΔπNN−NGB<0 ,制造商B不受市场偏好a 的影响,生产低碳产品。当市场流失率较大时
(1/4<γ<1) ,二次函数开口向下,a3 恒大于1 。下面讨论a4 的大小,证明方法与(0<γ≤1/4) 时相同,结果见命题3。3.2 制造商A生产低碳产品
制造商A生产低碳产品时,比较制造商B不同生产策略的利润,令
ΔπGN−GGB=πGNB−πGGB ,将两式代入得ΔπGN−GGB=−((γ+2)a+1+b)((γ−4)a+1+b)36。 ΔπGN−GGB 是关于a 的开口向上的二次函数,两根分别为a5=−(1+b)/(γ+2) ,a6=(1+b)/(4−γ) ,其中a5 恒小于零,下面讨论a6 与1 大小关系。当补贴较小时(b≤3−γ) ,0<a6<1 ,制造商B会根据市场偏好选择生产策略;0<a≤a6 时,ΔπNN−NGB≤0 ,即制造商B生产低碳产品;a6<a<1 时,ΔπGN−GGB>0 ,制造商B生产普通产品;当补贴较大时(b>3−γ) ,ΔπGN−GGB<0 ,制造商不受市场偏好a 的影响,生产低碳产品。由对称性同理可计算出当制造商B生产普通产品和低碳产品时,制造商A的生产策略选择,在此不作证明。
命题3 垄断供应商和双寡头制造商情形下,制造商会根据市场流失率、补贴大小和市场偏好决策生产策略。
1) 当市场流失率较小时
(0<γ≤3/4) 。(1) 补贴较小,即
b∈(0,b2] ,当a∈(0,a4] 时,(N,G),(G,N) 为均衡策略;当a∈(a4,1) 时,(N,N) 为均衡策略。(2) 补贴适中,即b∈(b2,b3] ,当a∈(0,a6] 时,(G,G) 为均衡策略;当a∈(a6,1) 时,(N,G),(G,N) 为均衡策略。(3) 补贴较高,即b∈(b3,∞) ,均衡策略为(G,G) 。2) 当市场流失率较大时
(3/4<γ<1) 。(1) 补贴较小,即
b∈(0,b1] ,均衡策略为(N,N) 。(2) 补贴b∈(b1,b2] ,当a∈(0,a4] 时,(N,G),(G,N) 为均衡策略;当a∈(a4,1) 时,(N,N) 为均衡策略。(3) 补贴b∈(b2,b3] ,当a∈(0,a6] 时,(G,G) 为均衡策略;当a∈(a6,1) 时,(N,G),(G,N) 为均衡策略。(4) 补贴较大,即b∈(b3,∞) ,均衡策略为(G,G) 。其中b3= (4γ−3)/3 ,b4=3/4 ,b5=3−γ 。将命题3归纳于表2。
表 2 双寡头制造商生产策略Table 2. Production strategy of duopoly manufacturersγ b a 策略 (0,0.75] (0,b4] (0,a4] (N,G)(G,N) (a4,1) (N,N) (b4,b5] (0,a6] (G,G) (a6,1) (N,G)(G,N) (b5,∞) (0,1) (G,G) (0.75,1) (0,b3] (0,1) (N,N) (b3,b4] (0,a4] (N,G)(G,N) (a4,1) (N,N) (b4,b5] (0,a6] (G,G) (a6,1) (N,G)(G,N) (b5,∞) (0,1) (G,G) 命题3说明当补贴较大时
(b>b5) ,由于高额补贴的存在,制造商都会选择生产低碳产品来获取更多的利润。随着补贴的减少,制造商会考虑市场偏好决策生产策略。当补贴适中时,若市场中对低碳产品的偏好较大,即使补贴不是很大,制造商仍都会选择生产低碳产品;若市场中对低碳产品的偏好较小,制造商此时生产低碳产品仍然有利可图,但是潜在市场需求有限。均衡结果为制造商A和B生产不同的产品,分别垄断各自的市场。当补贴很小且市场流失率较大时,普通产品具有成本优势,故都生产普通产品。对比命题1和命题3可发现,当b2<b<b5 时,垄断的制造商生产低碳产品,而双寡头制造商由于存在竞争,需根据市场偏好选择生产策略,这意味着相同政府补贴对垄断制造商生产低碳产品的激励作用更大。4. 碳排放量
双寡头制造商情形下,制造商生产过程中碳排放量与产量相关,碳排放量为
T=e(E[qNA]+E[qNB])+ eα(E[qGA]+E[qGB]) ,其中E[qNA] 和E[qNB] 为制造商A和B生产普通产品的预期产量,E[qGA] 和E[qGB] 为生产低碳产品的预期产量,e 为生产单位普通产品的碳排放量,eα 为生产单位低碳产品的碳排放量。生产普通和低碳产品的原材料不同,在生产加工中所制造的碳排放是不同的。设α 为普通产品与低碳产品生产过程中碳排放量的差异性参数,其值越高表示两者碳排放量差别越小。由于碳排放量公式较为复杂,通过一个例子来说明政府补贴对碳排放量的影响。设γ=0.8 ,e=1 ,如图2。由图2可知,随着政府补贴的增加,并不会使碳排放量持续减少。存在
b>b3 时,相同政府补贴下,随着碳排放差异的减小,碳排放量不断增大。当政府补贴较小时(b<b3) ,制造商此时只生产普通产品,且最优产量固定,故碳排放量保持不变。当政府补贴适中(b3<b<b4) 时,不同的碳排放差异α 会对碳排放量产生影响。当碳排放差异较大时(α 较小),政府补贴的增大会减少碳排放;随着α 增大,生产低碳产品的碳排放优势逐渐减小,碳排放量从单调递减转为先减小后增大。当政府补贴较大时(b>b4) ,此时制造商只生产低碳产品,政府补贴越大产量越大,碳排放量反而越大。5. 市场波动程度
双寡头制造商情形下,假设市场大小为
2a0 ,市场中普通产品的市场偏好为a ,a 服从(0,2a0) 的均匀分布,其中方差为a20/3 ,a0 越大方差越大,代表市场波动程度越大。市场中低碳产品的市场偏好为2a0−a 。当制造商都生产普通产品时,普通产品的潜在市场需求为a+γ(2a0−a) ,低碳产品为0;当制造商都生产低碳产品时,低碳产品的潜在市场需求为2a0−a+γa ,普通产品为0。计算过程与第3节相同。可得到不同市场流失率、补贴和市场偏好下的生产决策,如表3。表 3 市场存在波动下双寡头制造商的生产策略Table 3. Production strategy of duopoly manufacturers under market fluctuationγ b a 策略 (0,0.75] (0,b4(a0)] (0,a4] (N,G)(G,N) (a4,2a0) (N,N) (b4(a0),b5(a0)] (0,a6] (G,G) (a6,2a0) (N,G)(G,N) (b5(a0),∞) (0,2a0) (G,G) (0.75,1) (0,b3(a0)] (0,2a0) (N,N) (b3(a0),b4(a0)] (0,a4] (N,G)(G,N) (a4,2a0) (N,N) (b4(a0),b5(a0)] (0,a6] (G,G) (a6,2a0) (N,G)(G,N) (b5(a0),∞) (0,2a0) (G,G) 命题4 双寡头制造商情形下,市场波动会影响制造商的决策区域。且市场波动越大,政府补贴对制造商生产低碳产品的激励作用越弱。
证明 当
3/4<γ<1 ,且0<b≤(8a0γ−6a0)/3 时,均衡区域的面积为S1=a0/12 ;当0<γ≤3/4 ,且0<b≤ 8a0/3 ,或3/4<γ<1 ,且(8a0γ−6a0)/3<b≤ 8a0/3 时,均衡区域面积为S2=31a0/12 ;当8a0/3<b≤6a0− 2a0γ 时,均衡区域面积为S3=7a0/3 。显然S1 、S2 和S3 随着a0 增大而增大,为了更直观地揭示市场波动对决策区域的影响,分别设a0=0.4 、a0=0.6 ,如图3和图4。命题4说明双寡头制造商情形下,市场波动程度会对制造商的生产决策均衡区域产生影响。当
3/4<γ<1 且0<b≤(8a0γ−6a0)/3 时,制造商都选择生产普通产品,均衡区域随着a0 增大而增大;当0<γ≤3/4 且0<b≤8a0/3 或3/4<γ<1 且(8a0γ−6a0)/ 3<b≤8a0/3 时,制造商根据市场偏好选择生产策略;当8a0/3<b≤6a0−2a0γ 时,制造商也会根据市场偏好选择生产策略,且随着a0 增大,均衡区域也随之增大。命题4意味着对于制造商,随着市场波动程度增大,均衡区域变大。但从政府角度来看,相同市场流失率的条件下,市场波动程度越大,相同政府补贴对于制造商生产低碳产品的激励作用越小。6. 结论
研究了需求波动下政府补贴对制造商低碳产品选择的影响。首先研究了垄断制造商的情形,分析了满足各生产均衡策略的条件,接着考察了市场流失率对不同策略下期望利润的影响。然后考虑双寡头制造商的情形,探讨了两制造商不同策略组合进行古诺竞争的产量及利润,得出满足不同纳什均衡策略的条件。然后分析了政府补贴对于碳排放量的影响。最后讨论了市场波动程度对制造商生产均衡策略的影响。研究结果表明:1) 垄断和双寡头制造商情形下,政府补贴、市场流失率和市场偏好会对制造商的生产策略产生影响。政府补贴可激励制造商生产低碳产品;双寡头制造商情形下,竞争会减少政府补贴对制造商生产低碳产品的激励作用。2) 垄断制造商情形下,市场流失率增大将导致制造商不同均衡策略期望利润增大。3) 随着政府补贴的增加,并不会使碳排放量持续减少,较大的政府补贴反而会增加碳排放,且相同政府补贴下,随着碳排放差异的减小,碳排放量不断增大。4)市场波动程度会影响制造商决策均衡区域,且市场波动程度越大,政府补贴对制造商生产低碳产品的激励作用越弱。
进一步的研究将考虑两个方面:1) 考虑存在供应链中断风险对制造商生产策略选择的影响;2) 从消费者角度出发,考虑消费者社会比较对于制造商生产策略的影响。
-
表 1 垄断制造商的生产策略
Table 1 Monopoly manufacturer's production strategy
γ b a 策略 (0,0.5] (0,b2] (0,a2] 低碳 (a2,1) 普通 (b2,∞) (0,1) 低碳 (0.5,1) (0,b1] (0,1) 普通 (b1,b2] (0,a2] 低碳 (a2,1) 普通 (b2,∞) (0,1) 低碳 表 2 双寡头制造商生产策略
Table 2 Production strategy of duopoly manufacturers
γ b a 策略 (0,0.75] (0,b4] (0,a4] (N,G)(G,N) (a4,1) (N,N) (b4,b5] (0,a6] (G,G) (a6,1) (N,G)(G,N) (b5,∞) (0,1) (G,G) (0.75,1) (0,b3] (0,1) (N,N) (b3,b4] (0,a4] (N,G)(G,N) (a4,1) (N,N) (b4,b5] (0,a6] (G,G) (a6,1) (N,G)(G,N) (b5,∞) (0,1) (G,G) 表 3 市场存在波动下双寡头制造商的生产策略
Table 3 Production strategy of duopoly manufacturers under market fluctuation
γ b a 策略 (0,0.75] (0,b4(a0)] (0,a4] (N,G)(G,N) (a4,2a0) (N,N) (b4(a0),b5(a0)] (0,a6] (G,G) (a6,2a0) (N,G)(G,N) (b5(a0),∞) (0,2a0) (G,G) (0.75,1) (0,b3(a0)] (0,2a0) (N,N) (b3(a0),b4(a0)] (0,a4] (N,G)(G,N) (a4,2a0) (N,N) (b4(a0),b5(a0)] (0,a6] (G,G) (a6,2a0) (N,G)(G,N) (b5(a0),∞) (0,2a0) (G,G) -
[1] CHEN B C,LI Y J. The study of optimal production with emission permits and trading considering the government subsidies[C/OL].(2013-07-17). http://ieeexplore.ieee.org/ document/6602551/media.
[2] LU L, CHEN X. Two products manufacturer’s production decisions with carbon constraint[J]. Management Science & Engineering, 2013, 7(1): 31-34.
[3] DU S F, ZHU J A, JIAO H F. Game-theoretical analysis for supply chain with consumer preference to low carbon[J]. International Journal of Production Research, 2014, 53(12): 3753-3768.
[4] WANG D H, WANG R Y, ANDERSON D E. Production decision with carbon taxes and green-tech in a duopoly market[C/OL]. (2015-07-27). http://ieeexplore.ieee.org/search/ searchresult.jsp?newsearch=true&queryText=Production%20Decision%20with%20Carbon%20Taxes%20and%20Green-tech%20in%20a%20Duopoly%20Market.
[5] LETMATHE P, BALAKRISHNAN N. Environmental considerations on the optimal product mix[J].European Journal of Operational Research, 2005, 167(2): 398-412.
[6] DOBOS I. The effects of emission trading on production and inventories in the arrow-karlin model[J].International Journal of Production Economics, 2005, 93(8): 301-308.
[7] BRAUNEIS A, MESTEL R, PALAN S. Inducing low-carbon investment in the electric power industry through a price floor for emissions trading[J]. Energy Policy, 2013(53): 190-204.
[8] PERINO G, REQUATE T. Does more stringent environmental regulation induce or reduce technology adoption? When the rate of technology adoption is inverted U-shaped[J]. Journal of Environmental Economics and Management, 2012(64): 456-467.
[9] DMITRY K, TIMUR N, ANTON O. Environmental taxes and the choice of green technology[J]. Production and Operations Management, 2013, 22(5): 1035-1055.
[10] 马常松, 罗振宇, 李天, 等.碳限额政策约束下考虑绿色技术投入的生产策略[J].系统工程, 2015, 33(8): 61-64. MA Changsong, LUO Zhenyu, LI Tian, et al, LI cong. Production policies with green technology input under mandatory carbon emissions capacity[J]. Systems Engineering, 2015, 33(8): 61-64.
[11] GIRMA S, GORG H, STROBL E, et al. Creating jobs through public subsidies: an empirical analysis[J]. Labour Economics, 2008, 15(6): 1179-1199.
[12] 刘伟, 张泽华.对产业链中上游制造商R&D投入的政府补贴策略选择[J].系统科学与数学, 2011, 31(10): 1328-1337. LIU Wei, ZHANG Zehua. Government strategy choice of subsidy policy for upstream R&D in industry chains[J]. Journal of Systems Science and Mathematical Sciences, 2011, 31(10): 1328-1337.
[13] 刘慧慧, 黄涛, 雷明.废旧电器电子产品双渠道回收模型及政府补贴作用研究[J].中国管理科学, 2013, 21(2): 123-131. LIU Huihui, HUANG Tao, LEI Ming. Dual-channel recycling model of wast electrical and electronic equipment and research on effects of government subsidy[J]. Chinese Journal of Management Science, 2013, 21(2): 123-131.
[14] GALINATO G, YODER J K. An integrated tax-subsidy policy for carbon emission reduction[J] .Resource & Energy Economics, 2010, 32(3): 310-326.
[15] 张国兴, 张绪涛, 程素杰, 等.节能减排补贴政策下的企业与政府信号博弈模型[J].中国管理科学, 2013, 21(4): 129-136. ZHANG Guoxing, ZHANG Xutao, CHENG Sujie, et al. Signaling game model government and enterprise based on the subsidy policy for energy saving and emission reduction[J]. Chinese Journal of Management Science, 2013, 21(4): 129-136.
[16] LI J, DU W, YANG F M, et al. The carbon subsidy analysis in remanufacturing closed-loop supply chain[J]. Sustainability, 2014, 6(6): 3861-3877.
[17] 李友东, 赵道致, 夏良杰.低碳供应链纵向减排合作下的政府补贴策略[J].运筹与管理, 2014, 23(4): 1-11. LI Youdong, ZHAO Daozheng, XIA Liangjie. Government subsidy policy for enterprise’ cooperative behavior in emission reduction in low-carbon supply chain[J]. Operations Research and Management Science, 2014, 23(4): 1-11.
[18] 朱庆华, 夏西强, 王一雷.政府补贴下低碳与普通产品制造商竞争研究[J].系统工程学报, 2014, 29(5): 640-651. ZHU Qinghua, XIA Xiqiang, WANG Yilei. Study of the competition between low carban products and ordinary products manufacturer based on government subsidies[J]. Journal of Systems Engineering, 2014, 29(5): 640-651.
[19] 金常飞, 曹二保, 赖明勇.双寡头零售市场绿色营销演化博弈分析[J].系统工程学报, 2012, 27(3): 383-389. JIN Changfei, CAO Erbao, LAI Mingyong. Analysis in green marketing strategy of duopoly retailing market based on the evolutionary game theory[J]. Journal of Systems Engineering, 2012, 27(3): 383-389.