• 中国科技核心期刊
  • RCCSE中国核心学术期刊
  • 中国高校优秀科技期刊
  • 广东省优秀科技期刊

基于随机需求的服务节点截流选址下限约束模型

施宏伟, 马超, 魏莉

施宏伟, 马超, 魏莉. 基于随机需求的服务节点截流选址下限约束模型[J]. 工业工程, 2011, 14(5): 79-83.
引用本文: 施宏伟, 马超, 魏莉. 基于随机需求的服务节点截流选址下限约束模型[J]. 工业工程, 2011, 14(5): 79-83.
Shi Hong-wei, Ma Chao, Wei Li. An Interception Flow Location Model with Lower Demand Bound Constraint under Stochastic Demands[J]. Industrial Engineering Journal, 2011, 14(5): 79-83.
Citation: Shi Hong-wei, Ma Chao, Wei Li. An Interception Flow Location Model with Lower Demand Bound Constraint under Stochastic Demands[J]. Industrial Engineering Journal, 2011, 14(5): 79-83.

基于随机需求的服务节点截流选址下限约束模型

基金项目: 中央高校基本科研业务费专项资金资助项目(72104957);陕西省自然科学基金资助项目(06KR71)
详细信息
    作者简介:

    施宏伟(1965-),男,河南省人,副教授,博士,主要研究方向为公共资源系统管理、知识创新与服务创新管理.

An Interception Flow Location Model with Lower Demand Bound Constraint under Stochastic Demands

  • 摘要: 通过顾客服务需求效用期望的函数描述,分析了顾客流量分配规律随机性特征,界定了服务节点设施期望截获的顾客流量分布;考虑节点设施的生存约束条件,构建了具有流量需求下限约束的服务设施截流选址模型。实证研究表明,通过估计和优化一定节点服务设施的顾客流量下限约束及其满足概率,服务节点截流选址模型可有效地帮助投资主体寻求回报率最大的服务节点组合,并对新建服务节点决策提供数据支持。
    Abstract: Often it requires a lower demand bound to build a service node. Based on this requirement, this paper discusses the interception flow location problem with lower demand bound constraint considered. By presenting a utility function of customer demands, the stochastic distribution characteristics of customer flows is analyzed and the intercepted distribution of the customers of each service node is given. Then, a flow interception location model with lower demand bound constraint is presented by analyzing the operation constraints of the node facility. A case study is given to verify the application of the proposed model. Result shows that, by the estimation and optimization of the lower demand bound and its satisfied probability for each service node, the proposed model can help the stakeholders to solve the location problem and obtain the largest return.
  • [1] Berman O, Fouska N, Larson R C. Optimal location of discretionary service facilities[J]. Transportation Science,1992,26(3):201-211.
    [2] Vanston J H, Frisbie W Parker Frisbie, Sally Cook Lopreato. Alternate scenario planning[J]. Technological Forecasting and Social Change, 1977, 10(2): 159-180.
    [3] Serra D, Ratick S, ReVelle C. The maximum capture problem with uncertainty[J]. Environment and Planning, 1996, 23(1): 49-59.
    [4] Carbone R. Public facilities under stochastic demand[J]. Infor,1974,12(3):261-270.
    [5] Wang Q, Batta R.  Algorithms for a facility location problem with stochastic customer demand and immobile servers[J]. Annals of Operations Research, 2000,111(1): 17-34.
    [6] 盛骤,谢式千.概率论与数理统计[M].北京:高等教育出版社,1988.
    [7] Timmermans Harry.Consumer choice of shopping centre:An information integration approach[J]. Regional Studies,1988,16(3):171-182.
    [8] Nakanishi M,Cooper L G. Parameter estimates for multiplicative competitive interaction models least square approach[J].Journal of Marketing Research,1974,11(3):201-311.
    [9] Huff D L. A programmed solution for approximating an optimum retail location[J]. Land Economics,1966,42(3):293-303.
    [10] Harry J Schuler.Grocery shopping choicesIndividual preferences based on store attractiveness and distance[J].Environment and Behaviro,1981,13(3):331-347.
    [11] 陈馄,朱敏,王晓红.Logit模型在个体选择行为中的研究演进[J].统计与决策,2006,10(2):138-140.
    [12] 杨珺,杨超,张敏.需求不确定情况下的服务站截流选址分配问题研究[J].物流技术,2005(8):50-53.
    [13] 马云峰,刘勇,杨超.一类带时间和容量约束的截流选址问题[J].武汉科技大学学报:自然科学版,2007,30(2):217-219.
    [14] 杨超,马云峰,杨珺.一类带容量限制的服务站选址问题[J].系统工程, 2004,1(22):20-24.
    [15] 胡丹丹,杨超.α鲁棒随机截流选址问题的模型和算法[J].中国管理科学,2008,12(6):88-94.
    [16] 孙元欣,黄培清.竞争型连锁经营节点选址模型与遗传算法解[J].科学学与科学技术管理,2001(10):60-63.
    [17] 胡丹丹,杨超,杨珺.设施数目不确定情况下的截流选址问题[J].工业工程与管理,2009,14(1):15-23.
计量
  • 文章访问数:  3083
  • HTML全文浏览量:  8
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 刊出日期:  2011-10-30

目录

    /

    返回文章
    返回