基于卷积神经网络的ZPW-2000R轨道电路智能故障诊断方法

    A Fault Diagnosis Method of ZPW-2000R Track Circuit Based on Convolutional Neural Network

    • 摘要: 为解决ZPW-2000R型轨道电路故障智能自诊断问题,提出一种基于深度卷积神经网络的ZPW-2000R轨道电路故障诊断模型,输入微机存储的38个实时监测变量数据,可自动诊断包括轨道电路室内及室外设备的共29种故障类型,且故障诊断准确率可达96%。为轨道电路故障诊断提供了有效的智能化解决方案。

       

      Abstract: In order to solve the problem of intelligent fault diagnosis of ZPW-2000R track circuit, a fault diagnosis model of ZPW-2000R track circuit based on deep convolution neural network is proposed. By inputting 38 real-time monitoring variable data stored by microcomputer, 29 kinds of fault types including indoor and outdoor equipment of track circuit can be automatically diagnosed, and the accuracy rate of fault diagnosis can reach 96%. It provides an effective intelligent solution for track circuit fault diagnosis.

       

    /

    返回文章
    返回