工业工程 ›› 2021, Vol. 24 ›› Issue (4): 112-118,167.doi: 10.3969/j.issn.1007-7375.2021.04.013

• 实践与应用 • 上一篇    下一篇

改进多种群遗传算法的AutoStore系统多AGV调度优化

王晓军1, 王博1, 晋民杰1, 杨春霞1, 白新利2   

  1. 1. 太原科技大学 交通与物流学院,山西 太原 030024;
    2. 山西海德拉太矿国际采矿刀具设备有限公司,山西 太原 030024
  • 收稿日期:2020-07-26 发布日期:2021-09-02
  • 作者简介:王晓军(1978-),男,山西省人,实验师,硕士,主要研究方向为物流工程及优化
  • 基金资助:
    山西省重点研发计划资助项目(201903D121176);太原科技大学教学改革创新项目资助(202037)

Multi AGV Scheduling Optimization of AutoStore System Based on Improved Multi Population Genetic Algorithm

WANG Xiaojun1, WANG Bo1, JIN Minjie1, YANG Chunxia1, BAI Xinli2   

  1. 1. Department of Transportation and Logistics, Taiyuan University of Science and Technology, Taiyuan 030024, China;
    2. Shanxi Hydra TMMG Mining Tools & Equipment International Ltd., Taiyuan 030024, China
  • Received:2020-07-26 Published:2021-09-02

摘要: 新兴紧致密集型仓储系统AutoStore存在出、入库单独作业及联合作业并存的情况,使用传统单一作业模式下所得AGV调度方案易导致资源浪费或效率低等问题。在分析多作业模式工作流程基础上,建立多AGV任务分配模型,优化目标为系统总作业时间最短。对传统多种群遗传算法进行改进。首先,为获得具有多样性的初始解,给出适用于实数编码的初始解判断式;其次,为提高搜索效率,给出交叉、变异概率计算式,使得遗传操作能随着进化过程和适应度值变化而不同。算例分析验证所给算法的可行性与有效性,能为系统提供更优的AGV调度方案。

关键词: AutoStore系统, AGV调度, 多种群遗传算法, 联合作业

Abstract: The emerging compact-intensive storage system AutoStore has the coexistence of separate operations and joint operations for outbound and inbound operations. If the AGV scheduling scheme obtained under the traditional single operation mode is used, it is easy to cause resource waste or low efficiency. Therefore, based on the analysis of multi-operation mode process, the AGV task allocation model with the shortest total operation time of various operation modes is established, and the objective function is the shortest total operation time of the system. The traditional multi-population genetic algorithm is improved. Firstly, in order to make the distribution of the initial solution uniform, the distribution of the generated initial solution is judged. Secondly, the rule that the cross-mutation probability changes with the fitness value is given to enhance the search efficiency of the algorithm. The analysis of the example verifies the feasibility and effectiveness of the improved algorithm, which can provide a better system for the system AGV scheduling scheme.

Key words: AutoStore system, AGV scheduling, multi-population genetic algorithm, joint job

中图分类号: