[1] HOTELLING H. Multivariate quality control//Techniques of statistical analysis[M]//New York: McGraw-Hill, 1947: 111-184. [2] WOODALL W H, NCUBE M M. Multivariate CUSUM quality-control procedures[J]. Technometrics, 1985, 27(3): 285-292 [3] LOWRY C, WOODALL W, CHAMP C, et al. A multivariate exponentially weighted moving average control chart[J]. Technometrics, 1992, 34(1): 8 [4] BAKIR S. Distribution-free quality control charts based on signed-rank-like statistics[J]. Communications in Statistics, 2006, 35(4): 15 [5] GRAHAM M A, CHAKRABORTI S, HUMAN S W. A nonparametric EWMA sign chart for location based on individual measurements[J]. Quality Engineering, 2011, 23(3): 227-241 [6] ZOU C, WANG Z, TSUNG F. A spatial rank-based multivariate EWMA control chart[J]. Naval Research Logistics (NRL), 2012, 59(2): 91-110 [7] NING X, TSUNG F. A density-based statistical process control scheme for high-dimensional and mixed-type observations[J]. IIE Transactions, 2012, 44(4): 301-311 [8] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers[C/OL]. (2000-05-16). https://doi-org/10.1145/335191.335388. [9] TUERHONG G, KIM S B. Gower distance-based multivariate control charts for a mixture of continuous and categorical variables[J]. Expert Systems with Applications, 2014, 41(4): 1701-1707 [10] DING D, TSUNG F, LI J. Rank-based process control for mixed-type data[J]. IIE Transactions, 2016, 48(7): 673-683 [11] HUANG Z. Clustering large data sets with mixed numeric and categorical values[C]. Jeju: Springer, 1997: 21-34. [12] AHMAD A, DEY L. A k-mean clustering algorithm for mixed numeric and categorical data[J]. Data & Knowledge Engineering, 2007, 63(2): 503-527 [13] CHEUNG Y M, JIA H. Categorical-and-numerical-attribute data clustering based on a unified similarity metric without knowing cluster number[J]. Pattern Recognition, 2013, 46(8): 2228-2238 [14] 冯立伟, 张成, 李元, 等. 基于统计模量和局部近邻标准化的局部离群因子故障检测方法[J]. 计算机应用, 2018, 38(4): 965-970 FENG Liwei, ZHANG Cheng, LI Yuan, et al. Local outlier factor fault detection method based on statistical pattern and local nearest neighborhood standardization[J]. Journal of Computer Applications, 2018, 38(4): 965-970 [15] ZHU J, WANG Y, ZHOU D, et al. Batch process modeling and monitoring with local outlier factor[J]. IEEE Transactions on Control Systems Technology, 2018(99): 1-14 [16] JOHNSON R W. An introduction to the Bootstrap[J]. Teaching Statistics, 2001, 23(2): 49-54 [17] DUA D, GRAFF, C. UCI machine learning repository[DB/OL]. [2019-10-16]. http://archive.ics.uci.edu/ml. [18] SUKCHOTRAT T, KIM S B, TSUNG F. One-class classification-based control charts for multivariate process monitoring[J]. IIE Transactions, 2009, 42(2): 107-120 [19] HE Q P, WANG J. Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes[J]. IEEE Transactions on Semiconductor Manufacturing, 2007, 20(4): 345-354 [20] FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8): 861-874
|