[1] KALANTARI M, RABBANI M, EBADIAN M. A decision support system for order acceptance/rejection in hybrid MTS/MTO production systems[J]. Applied Mathematical Modelling, 2011, 35(3): 1363-1377 [2] AKYILDIZ B, KADAIFCI C, TOPCU I, et al. Prioritization of customer order selection factors by utilizing conjoint analysis: a case study for a structural steel firm[J]. Civil and Environmental Engineering, 2014, 8(2): 498-502 [3] 王晓欢, 王宁宁, 樊治平. 基于强化学习的订单生产型企业的订单接受策略[J]. 系统工程理论与实践, 2014, 34(12): 3121-3129. WANG Xiaohuan, WANG Ningning, FAN Zhiping. Reinforcement learning based order acceptance policy in make-to-order enterprises[J]. Systems Engineering —Theory & Practice, 2014, 34(12): 3121-3129. [4] 曹裕, 吴堪, 熊寿遥. 基于分层MTO订单的准入策略研究[J]. 管理科学学报, 2017, 20(8): 50-62 CAO Yu, WU Kan, XIONG Shouyao. Admission decision based on hierarchical MTO order[J]. Journal of Management Sciences in China, 2017, 20(8): 50-62 [5] ZHONG X, OU J, WANG G. Order acceptance and scheduling with machine availability constraints[J]. European Journal of Operational Research, 2014, 232(3): 435-441 [6] JIANG D, TAN J, LI B. Order acceptance and scheduling with batch delivery[J]. Computers & Industrial Engineering, 2017, 107: 100-104 [7] ESMAEILBEIGI R, CHARKHGARD P, CHARKHGARD H. Order acceptance and scheduling problems in two-machine flow shops: New mixed integer programming formulations[J]. European Journal of Operational Research, 2016, 251(2): 419-431 [8] PRECUP R E, DAVID R C, PETRIU E M, et al. Adaptive GSA-based optimal tuning of PI controlled servo systems with reduced process parametric sensitivity, robust stability and controller robustness[J]. IEEE Transactions on Cybernetics, 2017, 44(11): 1997-2009 [9] KHATIBINIA M, NASERALAVI S S. Truss optimization on shape and sizing with frequency constraints based on orthogonal multi-gravitational search algorithm[J]. Journal of Sound & Vibration, 2014, 333(24): 6349-6369 [10] PEI J, LIU X, PARDALOS P M, et al. Application of an effective modified gravitational search algorithm for the coordinated scheduling problem in a two-stage supply chain[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(1-4): 335-348 [11] DOWLATSHAHI M B, NEZAMABADI-POUR H, MASHINCHI M. A discrete gravitational search algorithm for solving combinatorial optimization problems[J]. Information Sciences, 2014, 258(3): 94-107 [12] GU B, PAN F. Modified gravitational search algorithm with particle memory ability and its application[J]. International Journal of Innovative Computing Information & Control, 2013, 9(11): 4531-4544 [13] RASHEDI E, NEZAMABADI-POUR H. Feature subset selection using improved binary gravitational search algorithm[J]. Journal of Intelligent & Fuzzy Systems, 2014, 26(3): 1211-1221 [14] SOLEIMANPOUR-MOGHADAM M, NEZAMABADI-POUR H, FARSANGI M M. A quantum inspired gravitational search algorithm for numerical function optimization[J]. Information Sciences, 2014, 267(5): 83-100 [15] 侯骅玲, 王宗彦, 杨扩岭, 等. 基于改进引力搜索算法的桥式起重机主梁优化[J]. 机械制造与自动化, 2018, 47(2): 41-44 HOU Hualing, WANG Zongyan, YANG Kuoling, et al. Optimization of main girder of bridge crane based on improved gravitational search algorithm[J]. Machine Building & Automation, 2018, 47(2): 41-44 [16] SAHU R K, PANDA S, PADHAN S. A novel hybrid gravitational search and pattern search algorithm for load frequency control of nonlinear power system[M].Amsterdam: Elsevier Science Publishers B.V., 2015. [17] KINGMA D P, BA J. Adam: A method for stochastic optimization[C/OL]. (2014-12-22). International Conference on Learning Representations 2015. http://arxiv.org/ahs/1412.6980. [18] SHEIKHPOUR S, SABOURI M, ZAHIRI S. A hybrid gravitational search algorithm—Genetic algorithm for neural network training[C/OL]. (2013-05-01). 2013 21st Iranian Conference on Electrical Engineering. http://10.1109/IranianCEE.2013.6599894. |