工业工程 ›› 2024, Vol. 27 ›› Issue (5): 73-80.doi: 10.3969/j.issn.1007-7375.230240

• 人因工程 • 上一篇    

基于骨架序列的工序动作识别与分析

张智聪, 蔡雨辰, 张良伟   

  1. 东莞理工学院 机械工程学院,广东 东莞 523808
  • 收稿日期:2023-12-15 发布日期:2024-11-05
  • 作者简介:张智聪(1980—),男,广东省人,教授,博士,主要研究方向为运筹优化。Email: zhangzc@dgut.edu.cn
  • 基金资助:
    广东省基础与应用基础研究基金委员会区域联合基金—地区培育资助项目(2022A1515140035)

Process Action Recognition and Analysis Based on Skeleton Sequences

ZHANG Zhicong, CAI Yuchen, ZHANG Liangwei   

  1. School of Mechanical Engineering, DongGuan University of Technology, Dongguan 523808, China
  • Received:2023-12-15 Published:2024-11-05

摘要: 为了解决工业工程领域传统制造过程中工序动作分析方法存在的耗时耗力与依赖经验的问题,运用动作识别技术替代传统的人工分解动作方法,提出一种基于骨架序列的工序动作智能检测方案。使用2D相机与MediaPipe框架搭建人体姿态估计模型以获取骨架序列,引入相关评估指标进行工序动作量化分析。利用骨架数据构建基于卷积门控循环单元CNN-GRU的动作分类模型,面向自建工序动作数据集进行实验验证。结果表明,所提出的CNN-GRU模型在参数量更少的情况下具有更高的准确率,相较于LSTM模型和GRU模型表现更优。在动作识别的基础上,将所得推理结果与标准作业程序进行对比得出异常动作,为工序动作识别与分析提供有效的解决方案,有助于规范生产操作和提升生产效率。

关键词: 人体姿态估计, 骨架序列, 卷积门控循环单元 (CNN-GRU), 工序动作识别

Abstract: To address the time-consuming, labor-intensive, and experience-dependent issues of traditional process action analysis methods in the field of industrial engineering, this paper proposes an intelligent detection method for process actions based on skeleton sequences using action recognition technology to replace traditional manual decomposition methods. A human body posture estimation model is built using a 2D camera and the MediaPipe framework to obtain skeleton sequences, and relevant evaluation metrics are introduced for action quantitative analysis. Also, a convolutional gated recurrent unit (CNN-GRU) based action classification model is trained using skeleton data. Experiments are conducted on a self-built process action dataset, demonstrating that the proposed CNN-GRU model achieves higher accuracy with fewer parameters compared with LSTM and GRU models. Furthermore, by comparing the inference results with standard operating procedures, abnormal actions are identified, providing an effective solution for process action recognition and analysis, which helps to standardize production operations and improve production efficiency.

Key words: human posture estimation, skeleton sequences, convolutional neural networks-gated recurrent unit (CNN-GRU), process action recognition

中图分类号: