[1] RENJITH S. An integrated framework to recommend personalized retention actions to control B2C E-commerce customer churn [J]. International Journal of Engineering Trends and Technology, 2015, 27(3): 152-157. [2] JU C H, LU Q B, GUO F P. E-commerce customer churn prediction model combined with individual activity [J]. Systems Engineering-Theory & Practice, 2013, 33(1): 141-150. [3] 朱帮助. 基于SMC-RS-LSSVM的电子商务客户流失预测模型[J]. 系统工程理论与实践, 2010, 30(11): 1960-1967. ZHU Bangzhu. E-business customer churn prediction based on integration of SMC, rough sets and least square support vector machine [J]. Systems Engineering-Theory & Practice, 2010, 30(11): 1960-1967. [4] YU X B, GUO S S, GUO J, et al. An extended support vector machine forecasting framework for customer churn in e-commerce [J]. Expert Systems with Applications, 2011, 38(3): 1425-1430. [5] 朱帮助, 张秋菊, 邹昊飞, 等. 基于OSA算法和GMDH网络集成的电子商务客户流失预测[J]. 中国管理科学, 2011, 19(5): 64-70. ZHU Bangzhu, ZHANG Qiuju, ZOU Haofei, et al. E-business customer churn prediction based on integration of objective system analysis and group method of data handling network [J]. Chinese Journal of Management Science, 2011, 19(5): 64-70. [6] SCHAPIRE R E. The strength of weak learnability [C]// Foundations of Computer Science, 1989. 30th Annual Symposium on. IEEE, 1989: 197-227. [7] BREIMAN L. Bagging predictors [J]. Machine Learning, 1996, 24(2): 123-140. [8] 应维云, 蔺楠, 谢雅雅, 等. 用LDA Boosting算法进行客户流失预测[J]. 数理统计与管理, 2010, 29(3): 400-408. YING Weiyun, LIN Nan, XIE Yiayia, et al. Research on the LDA boosting in customer churn prediction [J]. Journal of Applied Statistics & Management, 2010, 29(3): 400-408. [9] LIU M, QIAO X Q, XU W L. Three categories customer churn prediction based on the adjusted real adaBoost [J]. Communication in Statistics-Simulation and Computation, 2011, 40(10): 1548-1562. [10] 张玮, 杨善林, 刘婷婷. 基于CART和自适应Boosting算法的移动通信企业客户流失预测模型[J]. 中国管理科学, 2014, 22(10): 90-96. ZHANG Wei, YANG Shanlin, LIU Tingting. Customer churn prediction in mobile communication enterprises based on CART and Boosting algorithm [J]. Chinese Journal of Management Science, 2014, 22(10): 90-96. [11] SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers [J]. Neural Processing Letters, 1999, 9(3): 293-300. [12] 应维云, 覃正, 赵宇, 等. SVM方法及其在客户流失预测中的应用研究[J]. 系统工程理论与实践, 2007, 27(7): 105-110. YING Weiyun, QIN Zheng, ZHAO Yu, et al. Support vector machine and its application in customer churn prediction [J]. Systems Engineering--Theory & Practice, 2007, 27(7): 105-110. [13] 赵铭, 李雪, 李秀婷, 等. 基于聚类分析的商业银行基金客户的分类研究[J]. 管理评论, 2013, 7: 38-44. ZHAO Ming, LI Xue, LI Xiuting, et al. Research on the classification of commercial banks' fund clients based on clustering analysis [J]. Management Review, 2013, 7: 38-44. [14] 徐翔斌, 王佳强, 涂欢, 等. 基于改进RFM模型的电子商务客户细分[J]. 计算机应用, 2012, 32(5): 1439-1442. XU Xiangbin, WANG Jiaqiang, TU Huan, et al. Customer classification of E-commerce based on improved RFM model [J]. Journal of Computer Applications, 2012, 32(5): 1439-1442. [15] BRITO P Q, SOARES C, ALMEIDA S, et al. Customer segmentation in a large database of an online customized fashion business [J]. Robotics and Computer-Integrated Manufacturing, 2015, 36: 93-100. [16] VELMURUGAN T, SANTHANAM T. Computational complexity between K-means and K-medoids clustering algorithms for normal and uniform distributions of data points [J]. Journal of Computer Science, 2010, 6(3): 363-368. [17] WANG D, THOMAS S G, WANG K L, et al. Finding groups in data, an itroduction to cluster analysis [J]. Applied Physics Letters, 1997, 70(12): 1593-1595. [18] HADDEN J, TIWARI A, ROY R, et al. Computer assisted customer churn management: State-of-the-art and future trends [J]. Computers & Operations Research, 2007, 34(10): 2902-2917. [19] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique [J]. Journal of Artificial Intelligence Research, 2002, 16(1): 321-357. [20] DRUMMOND C, HOLTE R C. C4. 5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling [C]//Workshop on learning from imbalanced datasets II. 2003, 11. [21] GANGANWAR V. An overview of classification algorithms for imbalanced datasets [J]. International Journal of Emerging Technology and Advanced Engineering, 2012, 2(4): 42-47. [22] PROVOST F. Analysis and visualization of classifier performance: comparison under imprecise class and cost distributions[C]// International Conference on knowledge Discovery & Data Mining. 1999: 43-48. [23] FAN X, TANG K. Enhanced maximum AUC linear classifier [C]// International Conference on Fuzzy Systems and Knowledge Discovery, Fskd 2010, 10-12 August 2010, Yantai, Shandong, China. 2010: 1540-1544. [24] KUBAT M, MATWIN S. Addressing the curse of imbalanced training sets: one-sided selection [C]// In Proceedings of the Fourteenth International Conference on Machine Learning. 2000: 179--186. [25] KAUFMAN L, ROUSSEEUW P J. Finding groups in data. an introduction to cluster analysis [J]. Wiley, 1990. |