工业工程 ›› 2011, Vol. 14 ›› Issue (6): 126-132.
• 实践与应用 • 上一篇 下一篇
出版日期:
发布日期:
Online:
Published:
摘要: 针对客户流失分析中实际客户样本数据量大、流失与未流失客户样本分布不平衡的特点,提出一种基于Boosting与代价敏感决策树的集成方法,并将其应用于商业银行个人理财业务的客户流失分析。通过实际商业银行客户数据集测试,并与支持向量机、人工神经网络和Logistic回归等方法进行比较,发现该方法能够有效解决客户流失问题。
关键词: 客户流失, 数据挖掘, 决策树, Boosting算法, 代价敏感学习, 商业银行个人理财业务
Abstract: In customer churn analysis of personal financial services in commercial bank, there are large number of customer samples, and the number of churn samples and that of nonchurn samples are imbalanced. Thus, it is a challenging problem to do the churn analysis. To solve this problem, an integrated method that combines boosting algorithm with costsensitive decision tree is presented. To show the effectiveness of the proposed method, it is applied to a case study. Comparison shows that the proposed method outperforms the other existing ones, such as support vector machine, artificial neural network, and logistic regression.
Key words: customer churn, data mining, decision tree, boosting algorithm, cost-sensitive learning, personal financial services in commercial bank
张旭梅, 石瀚凌. 基于分类挖掘方法的商业银行个人理财业务客户流失分析[J]. 工业工程, 2011, 14(6): 126-132.
Zhang Xumei, Shi Hanling. Customer Churn Analysis in Personal Financial Services of Commercial Bank Based on Classification Mining Method[J]. Industrial Engineering Journal , 2011, 14(6): 126-132.
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: https://iej.gdut.edu.cn/CN/
https://iej.gdut.edu.cn/CN/Y2011/V14/I6/126