工业工程

• 专题论述 • 上一篇    下一篇

基于因果贝叶斯网络的风险建模与分析

  

  1. 1.北京航空航天大学 经济管理学院,北京 100191; 2.华中科技大学 经济学院,湖北 武汉 430074; 3.北京振冲工程股份有限公司,北京 100102; 4.宾西法尼亚州立大学 能源与矿产工程系,美国宾夕法尼亚州大学城,16802
  • 出版日期:2016-10-31 发布日期:2017-02-21
  • 作者简介:杨敏(1975-),男,江西省人, 副教授,主要研究方向为工程风险管理、专家判断抽取与集成、因果推断.
  • 基金资助:

    国家自然科学基金资助项目(71271014)

Risk Modeling and Analysis Based on Causal Bayesian Network: A Case Study

  1. 1. School of Economics and Management, Beihang University, Beijing 100191, China; 2. School of Economics, Huazhong University of Science and Technology, Wuhan 430074, China;3. Beijing Vibroflotation Engineering CO., LTD., Beijing 100102, China;4. Department of Energy and Mineral Engineering, Pennsylvania State University Park, PA, US, 16802
  • Online:2016-10-31 Published:2017-02-21

摘要:

为验证基于因果贝叶斯网络的风险建模与分析(CBNbased RMA)的有效性,引入4种常见模式简化该方法的结构建模,以降低随后参数建模中专家判断工作量,然后将该改进方法应用于巴基斯坦NEELUMJHELUM水电站隧洞掘进工程风险分析中,有效控制了项目施工风险,获得远超预期的盈利。该案例应用结果表明,改进的CBNbased RMA方法具有很强的可操作性,可显著提高工程风险管理效率。

关键词: 工程风险管理, 因果贝叶斯网络, 隧洞工程

Abstract:

In order to validate the CBNbased RMA method proposed in article [1], four common patterns are first introduced to simplify the structure modeling of the method, which will reduce the effort of experts judgement in subsequent parameter modeling, and then the improved method is applied in risk analysis of NeelumJhelum hydropower station tunneling project in Pakistan. As a result, the contractors control effectively the project risks and obtain much more revenue than expected. This case shows that improved CBNbased RMA method has easy operability and will significantly enhance the efficiency of engineering risk management.

Key words: engineering risk management, causal Bayesian network, tunneling project