工业工程 ›› 2021, Vol. 24 ›› Issue (6): 25-33.doi: 10.3969/j.issn.1007-7375.2021.06.004

• 专题论述 • 上一篇    下一篇

求解带AGV柔性作业车间调度问题的改进灰狼算法

徐逸凡, 张利平, 唐秋华, 黄雨晨   

  1. 1. 武汉科技大学 1. 冶金装备及其控制教育部重点实验室;
    2. 机械传动与制造工程湖北省重点实验室,湖北 武汉 430081
  • 收稿日期:2020-05-23 发布日期:2022-01-24
  • 作者简介:徐逸凡(1994—),男,湖北省人,硕士研究生,主要研究方向为车间调度
  • 基金资助:
    国家自然科学基金面上资助项目(51875420,51875421)

An Improved Grey Wolf Optimization for Solving Scheduling Problem of Flexible Job Shop with AGV

XU Yifan, ZHANG Liping, TANG Qiuhua, HUANG Yuchen   

  1. 1. Key Laboratory of Metallurgical Equipment and Control Technology;
    2. Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
  • Received:2020-05-23 Published:2022-01-24

摘要: 针对带AGV的柔性作业车间调度问题,以最小化完工时间为目标,考虑AGV在装载站、机器、卸载站之间的有效负载时间和空载时间,构建了数学规划模型。其次,提出一种有效的灰狼算法进行求解,基于该问题特征,设计机器选择、工序排序和AGV搬运的3段编码,有效地保证每个个体均可产生可行解;灰狼算法中改进了关键参数aE设定方式,有效平衡了算法的勘探能力和局部搜索能力;为进一步提升算法跳出局部最优解的能力,该算法融合了领域搜索等方法。最后,案例测试结果表明,改进灰狼算法在求解带AGV柔性作业车间调度问题中具有优越的性能。

关键词: 柔性作业车间调度, AGV搬运, 灰狼算法, 邻域搜索

Abstract: With the continuous development of automation technology and workshop intelligent technology, the integration of material equipment planning and production scheduling is getting higher and higher. Aiming at the problem of flexible job shop scheduling with AGV (automated guided vehicle), with the goal of minimizing completion time, considering the effective load time and empty time of the AGV between the loading station, machine and unloading station, a mathematical programming model is con-structed. Secondly, an effective gray wolf algorithm is proposed to solve the problem. Based on the characteristics of the problem, a three-segment code for machine selection, process sequencing and AGV handling is designed to effectively ensure that each individual can produce a feasible solution. The setting methods of key parameters a and E are improved, which effectively balances the exploration ability and local search ability of the algorithm; in order to further improve the algorithm's ability to jump out of the local optimal solution, the algorithm incorporates domain search and other methods. Finally, the case test results show that the improved gray wolf algorithm has superior performance in solving the scheduling problem of flexible job shop with AGV.

Key words: flexible job shop, AGV (automated guided vehicle) handling, grey wolf algorithm, neighborhood search

中图分类号: