工业工程 ›› 2022, Vol. 25 ›› Issue (1): 136-143.doi: 10.3969/j.issn.1007-7375.2022.01.017

• 实践与应用 • 上一篇    下一篇

基于CNN-集成学习的多风电机组故障诊断

叶祎旎, 李艳婷   

  1. 上海交通大学 机械与动力工程学院, 上海 200241
  • 收稿日期:2020-07-06 发布日期:2022-03-02
  • 作者简介:叶祎旎(1995—),女,重庆市人,硕士研究生,主要研究方向为数据驱动的故障诊断
  • 基金资助:
    国家自然科学基金资助项目(71672109, 71531010)

Fault Diagnosis of Multi Wind Turbine Based on CNN-Ensemble Learning

YE Yini, LI Yanting   

  1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200241, China
  • Received:2020-07-06 Published:2022-03-02

摘要: 海上风电场地处偏远环境,长期受到盐碱腐蚀。为解决风电机组运行过程中产生的多种故障检测识别问题,在传统卷积神经网络LeNet-5的基础上构建模型。该模型采用ReLU函数作为激活函数,增加了卷积层、池化层和全连接层。针对风电机组的监督控制和数据采集 (supervisory control and data acquisition, SCADA)系统及状态监控 (condition monitoring, CM)系统所提供的数据集,进行多元类别故障诊断。并对多台风电机组进行聚类分析,应用集成学习方法,构建多风电机组故障诊断模型。实验表明,所提方法取得了97% ~ 99%的诊断精度。通过将实验结果与其他算法进行对比,验证了该方法的有效性。

关键词: 故障诊断, LeNet-5网络, 监督控制和数据采集, 多元类别, 集成学习

Abstract: Offshore wind farms are located in remote environment and have been constantly corroded by saline alkali. In order to solve the problems of multiple-fault detection and identification in the operation process of wind turbines, a model is established based on the traditional convolution neural network LeNet-5. The model adopts the ReLU function as the activation function, and a convolutional layer, a pooling layer and a full connection layer are incepted. Aiming at the datasets of the wind turbine supervisory control and data acquisition (SCADA) system and the condition monitoring (CM) system, a multi-category fault diagnosis is carried out. A cluster analysis is implemented on several wind turbines, followed by ensemble learning to build a multi-machine wind turbine fault diagnosis model. The experimental results indicate that the diagnostic accuracy of the proposed method is 97% ~ 99%. By comparing the experimental results and other algorithms, the effectiveness of the proposed method is verified.

Key words: fault diagnosis, LeNet-5 network, supervisory control and data acquisition (SCADA), multi-category, ensemble learning

中图分类号: