工业工程 ›› 2022, Vol. 25 ›› Issue (2): 28-33.doi: 10.3969/j.issn.1007-7375.2022.02.004

• 专题论述 • 上一篇    下一篇

基于基因分类交互式遗传算法的品牌意象研究

苏晨, 周福莹, 曹剑, 彭魏   

  1. 湖北工业大学 工业设计学院,湖北 武汉 430068
  • 收稿日期:2020-08-12 发布日期:2022-04-28
  • 通讯作者: 彭魏 (1986—),男,湖北省人,讲师,硕士,主要研究方向为工业设计。E-mail: 38350217@qq.com E-mail:38350217@qq.com
  • 作者简介:苏晨 (1968—),男,湖北省人,教授,硕士,主要研究方向为工业设计
  • 基金资助:
    教育部人文社会科学研究规划基金资助项目 (18YJAZH048);湖北省教育厅人文社会科学资助项目(15Y054)

A Research on Brand Image Based on Gene Classification Interactive Genetic Algorithm

SU Chen, ZHOU Fuying, CAO Jian, PENG Wei   

  1. School of Industrial Design, Hubei University of Technology, Wuhan 430068, China
  • Received:2020-08-12 Published:2022-04-28

摘要: 为了提升机电设备品牌产品的商业价值,满足用户的品牌意象需求,提出基于基因分类交互式遗传算法的品牌意象优化和创新方法。 运用调研法和专家评价法提取重要设计要素和明确品牌意象词汇。再运用数量化理论I针对二者的对应关系构建感性评价矩阵,计算各设计要素贡献度值得到感性要素集合,代入IGA进行遗传操作。最后以感性评价值区间作为约束条件筛选最终产出方案。将方法流程运用到京山轻机捷普瑞印刷机设计项目实践中,对比基因分类前后改进后算法能更快速地获取用户适应度高的造型设计方案,有效提高有效的方案产出效率,缩短项目周期,该设备已由Ankutsan集团旗下的Antalya和Cerkezkoy工厂投产,证明该设备在中高端市场具有一定的竞争力。由此可知,该方法能有效指导机电品牌产品的创新设计,并为机电设备的品牌意象研究提供一种可行和有效的方法。

关键词: 品牌意象, 基因分类, 交互式遗传算法, 数量化理论I

Abstract: In order to improve the commercial value of electromechanical equipment brand products and meet the needs of users for brand image, a brand image optimization and innovation method based on gene classification interactive genetic algorithm is proposed. Research and expert evaluation methods are used to extract important design elements and clear brand image vocabulary. Then the quantitative theory I is used to construct the perceptual evaluation matrix according to the corresponding relationship, and calculate the contribution value of each design element to the perceptual element set, bringing them in genetic operation through IGA. Finally, the perceptual evaluation value interval is used as the constraint condition to select the final output scheme. The method and process are applied to the design project of Jingshan Light Machinery Jepley Printing Machines. Comparing the cases before and after gene classification, the improved algorithm can obtain the shape design scheme with high user adaptability more quickly, effectively improve the effective scheme output efficiency and shorten the project period. Moreover, the equipment has been put into production in Antalya and Cerkezkoy factories of Ankutsan Group, which proves that the equipment has certain competitiveness in the high-end market. Therefore, this method can effectively guide the innovative design of electromechanical brand products, and provide a feasible and effective method for the brand image research of electromechanical equipment.

Key words: brand image, gene classification, interactive genetic algorithm, quantification theory type I

中图分类号: