工业工程 ›› 2023, Vol. 26 ›› Issue (4): 154-163.doi: 10.3969/j.issn.1007-7375.2023.04.018

• 系统建模与优化算法 • 上一篇    

基于OC-SVM与DNN相结合的ZPW-2000R轨道电路故障诊断研究

谢本凯1, 蔡水涌1, 黄春雷2, 禹建丽1, 陈广智3, 王国保1   

  1. 1. 郑州航空工业管理学院 管理工程学院,河南 郑州 450046;
    2. 黑龙江瑞兴科技股份有限公司 客户技术服务中心,黑龙江 哈尔滨 150030;
    3. 郑州航空工业管理学院 智能工程学院,河南 郑州 450046
  • 收稿日期:2023-02-05 发布日期:2023-09-08
  • 作者简介:谢本凯(1987-),男,河南省人,讲师,博士,研究方向为复杂系统建模与仿真
  • 基金资助:
    河南省软科学研究计划资助项目 (212400410099);河南省高等教育教学改革研究与实践项目 (2021SJGLX470);河南省自然科学基金资助项目 (222300410367);河南省高等学校重点科研资助项目 (22B520041)

Fault Diagnosis of ZPW-2000R Track Circuits Based on OC-SVM and DNN

XIE Benkai1, CAI Shuiyong1, HUANG Chunlei2, YU Jianli1, CHEN Guangzhi3, WANG Guobao1   

  1. 1. School of Management Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China;
    2. Customer Technical Service Center, Heilongjiang Ruixing Technology Co., Ltd., Harbin 150030, China;
    3. School of Intelligent Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
  • Received:2023-02-05 Published:2023-09-08

摘要: 针对轨道电路故障诊断准确率低且高质量故障数据难以收集等问题,提出一种基于单分类支持向量机 (OC-SVM) 与深度神经网络 (DNN) 相结合的故障诊断方法。该方法使用OC-SVM模型对数据进行单分类识别,将正样本数据输入到DNN模型进行训练和预测,为负样本数据添加标签并收集。利用ZPW-2000R轨道电路信号数据进行大量实验,结果表明OC-SVM模型能精确地识别出正负样本数据,DNN模型能准确高效地诊断出15种数据类型,且准确率高达99%。与粒子群算法优化支持向量机、卷积神经网络、堆叠自编码器3种故障诊断方法相比,该组合方法的准确率更高,诊断效果更稳定。

关键词: 故障诊断, 深度神经网络, 单分类支持向量机, ZPW-2000R轨道电路

Abstract: To address the problems of low accuracy for fault diagnosis for track circuits and difficulty in collecting high-quality fault data, a fault diagnosis method based on the combination of one-class support vector machine (OC-SVM) and deep neural network (DNN) is proposed. This method uses OC-SVM model to perform single-class recognition of data. The positive sample data are input into DNN model for training and prediction to label and collect the negative sample data. A large number of experiments are conducted using ZPW-2000R track circuit signal data. Results show that the OC-SVM model can accurately identify the positive and negative sample data, and DNN model can accurately and efficiently diagnose 15 types of data with an accuracy rate of 99%. Compared with the three fault diagnosis methods of particle swarm algorithm optimized support vector machine, convolutional neural network and stacked self-encoder, this combined method has a higher accuracy and more stable diagnosis effectiveness.

Key words: fault diagnosis, deep neural network, one-class support vector machine, ZPW-2000R track circuit

中图分类号: