工业工程 ›› 2024, Vol. 27 ›› Issue (2): 27-36,66.doi: 10.3969/j.issn.1007-7375.230233

• 综述 • 上一篇    下一篇

基于深度智能视觉的表面缺陷检测研究进展

高艺平, 王浩, 李新宇, 高亮   

  1. 华中科技大学 机械科学与工程学院,湖北 武汉 430074
  • 收稿日期:2023-12-06 出版日期:2024-04-30 发布日期:2024-04-29
  • 通讯作者: 李新宇(1985-),男,湖北省人,教授,博士,主要研究方向为智能制造系统、车间调度、智能优化与机器学习。Email:lixinyu@mail.hust.edu.cn E-mail:lixinyu@mail.hust.edu.cn
  • 作者简介:高艺平(1991-),男,山东省人,博士,主要研究方向为深度学习、智能检测
  • 基金资助:
    国家自然科学基金资助项目 (52205523)

A Review on Surface Defect Detection Based on Deep Intelligent Vision

GAO Yiping, WANG Hao, LI Xinyu, GAO Liang   

  1. School of Mechanical Science & Engineering, Huazhong University of Science & Technology, Wuhan 430074, China
  • Received:2023-12-06 Online:2024-04-30 Published:2024-04-29

摘要: 基于深度智能视觉的表面缺陷检测研究在制造业中起着越发重要的作用,本文阐述深度智能视觉的表面缺陷检测在现代工业质检中的重要性,对现有研究进展进行梳理总结。深度智能视觉以机器视觉和深度学习为技术基础,为不同工业场景提供高精高效的表面缺陷检测算法。本文从检测细粒度的角度将表面缺陷检测分为表面缺陷分类、定位、分割检测3个部分,并分别对分类、定位、分割方法进行系统综述,梳理现有表面缺陷检测研究的问题和思路。分类检测针对数据和缺陷图形特征问题进行研究,因其基础性和易拓展性于不同工业场景的应用呈现分散发展;定位检测以模型框架、矩形框检测和标注成本为主要问题,表现出追求轻量化和特征融合机制的研究趋势;分割检测更关注图像细节特征。通过研究分类、定位、分割的多任务模型框架以探索分类、分割检测之间的互补性。最后总结目前表面缺陷检测研究存在的问题,并对发展趋势进行展望。

关键词: 表面缺陷检测, 缺陷分类, 缺陷定位, 缺陷分割

Abstract: The exploration on surface defect detection based on deep intelligent vision plays an increasingly important role in the manufacturing industry. The importance of surface defect detection based on deep intelligent vision in modern industrial quality inspection is explained and the existing research progress is summarized in this paper. Deep intelligent vision provides high-precision and high-efficiency surface defect detection algorithms for different industrial scenarios based on the technologies of machine vision and deep learning. Surface defect detection can be divided into three categories: surface defect classification, localization, and segmentation from the perspective of detection fineness. The classification, localization, and segmentation methods are systematically reviewed, respectively, to sort out the problematic points and lines of the existing surface defect detection methods. Surface defect classification focuses on the problem of data and defective graphical features, which shows decentralized development due to its basic and easily expandable nature for application in different industrial scenarios. Surface defect localization takes the model framework, rectangular box detection mechanism, and annotation cost as the main problems, showing a research trend of pursuing lightweight and feature fusion mechanisms. Surface defect segmentation pays more attention to detailed features of an image. A multi-task framework for classification, localization, and segmentation, is studied to explore the complementarity between classification and segmentation detection. Finally, the current issues of existing surface defect detection studies are concluded and an outlook on the development trend is given.

Key words: surface defect detection, defect classification, defect localization, defect segmentation

中图分类号: