工业工程 ›› 2024, Vol. 27 ›› Issue (4): 9-18.doi: 10.3969/j.issn.1007-7375.240076

• 质量工程与生产可靠性 • 上一篇    

基于基尼的深度解卷积方法在机械装备故障诊断中的应用研究

石惠芳, 苗永浩, 夏雨   

  1. 北京航空航天大学 可靠性与系统工程学院,北京 100191
  • 收稿日期:2024-02-29 发布日期:2024-09-07
  • 通讯作者: 苗永浩(1992—),男,湖北省人,副教授,博士,主要研究方向为机械装备故障诊断与预测、深度学习和剩余寿命预测。Email:miaoyonghao@buaa.edu.cn E-mail:miaoyonghao@buaa.edu.cn
  • 作者简介:石惠芳(2001—),女,湖南省人,硕士研究生,主要研究方向为机械装备故障诊断与寿命预测。Email:shihuifang22@buaa.edu.cn
  • 基金资助:
    国家重点研发计划资助项目 (2021YFB2500604)

Application of Gini Index-Based Deep Deconvolution in Mechanical Equipment Fault Diagnosis

SHI Huifang, MIAO Yonghao, XIA Yu   

  1. School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
  • Received:2024-02-29 Published:2024-09-07

摘要: 解卷积方法是机械装备故障诊断的有力工具,但传统研究仍属于浅层特征提取,难以处理极低信噪比情况。针对此问题,在传统解卷积理论的基础上引入特征学习思想,提出一种基于基尼指数(Gini index, GI)的稀疏特征深度解卷积方法(GI-based sparse deep deconvolution, GI-SDD)进行机械装备早期故障诊断。采用频带均分策略初始化输入层滤波器,为后续解卷提供方向。以能够表征机械故障稀疏特征的GI作为损失函数,指导深度网络进行训练。基于广义的特征向量法(eigenvector algorithm, EVA)执行权重优化,进而对微弱故障特征进行逐层学习。利用相关系数和包络谱峭度(envelope kurtosis, EK)准则联合评价故障信息,降维输出最为显著的故障分量。经仿真分析及试验验证,所提方法对背景噪声具有强鲁棒性,故障特征得到显著加强,其EK值相较于传统MED和MGID结果分别提升163.43%和187.11%。

关键词: 基尼指数, 特征向量法, 深度解卷积, 特征学习, 故障诊断

Abstract: Deconvolution methods are powerful tools for mechanical equipment fault diagnosis; however, traditional research still relies on shallow feature extraction, making it difficult to handle extremely low signal-to-noise ratios. To address this issue, by introducing the idea of feature learning into the traditional deconvolution theory, a Gini index (GI) based sparse deep deconvolution (GI-SDD) method is proposed for early fault diagnosis of mechanical equipment. First, a band-averaging strategy is adopted to initialize the input layer filter, providing direction for subsequent deconvolution. Next, GI that can represent sparse features of mechanical faults is utilized as the loss function to guide the training of the deep network. Weight optimization is implemented based on the generalized eigenvector algorithm (EVA), thereby learning weak fault features layer by layer. Finally, correlation coefficients and envelope kurtosis (EK) criteria are utilized to evaluate the fault information, reducing dimensionality to output the most significant fault components. Simulation and experiment results demonstrate that the proposed method is robust against strong background noise with fault features being greatly enhanced. Furthermore, the EK of the proposed method improves by 163.43% and 187.11% compared with traditional MED and MGID results respectively.

Key words: Gini index (GI), eigenvector algorithm (EVA), deep deconvolution, feature learning, fault diagnosis

中图分类号: