[1] SANTOS-REYES J, OLMOS-PEÑA S. Analysis of the ‘News Divine’ stampede disaster[J]. Safety Science, 2017, 91: 11-23. [2] ILLIYAS F T, MANI S K, Pradeepkumar A P, et al. Human stampedes during religious festivals: A comparative review of mass gathering emergencies in India[J]. International Journal of Disaster Risk Reduction, 2013, 5: 10-18. [3] KOK V J, MEI K L, CHAN C S. Crowd behavior analysis: A review where physics meets biology[J]. Neurocomputing, 2016, 177: 342-362. [4] HOOGENDOORN S P, BOVY P H L. Pedestrian route-choice and activity scheduling theory and models[J]. Transportation Research Part B Methodological, 2004, 38(2): 169-190. [5] GU Z, LIU Z, SHIWAKOTI N, et al. Video-based analysis of school students' emergency evacuation behavior in earthquakes[J]. International Journal of Disaster Risk Reduction, 2016, 18: 1-11. [6] HELBING D, FARKAS I, VICSEK T. Simulating dynamical features of escape panic[J]. Nature, 2000, 407: 2000. [7] BODE N W F, CODLING E A. Human exit route choice in virtual crowd evacuations[J]. Animal Behaviour, 2013, 86(2): 347-358. [8] SHI X, YE Z, SHIWAKOTI N, et al. Empirical investigation on safety constraints of merging pedestrian crowd through macroscopic and microscopic analysis[J]. Accident; analysis and prevention, 2016, 95(Part B): 405. [9] SHIWAKOTI N, SARVI M. Enhancing the panic escape of crowd through architectural design[J]. Transportation Research Part C Emerging Technologies, 2013, 37(3): 260-267. [10] SHIWAKOTI N, SARVI M. Understanding pedestrian crowd panic: a review on model organisms approach[J]. Journal of Transport Geography, 2013, 26(26): 12-17. [11] FADHLULLAH S Y, ISMAIL W. A statistical approach in designing an RF-based human crowd density estimation system[J]. International Journal of Distributed Sensor Networks, 2016, 2016: 1-9. [12] FU M, XU P, LI X, et al. Fast crowd density estimation with convolutional neural networks[J]. Engineering Applications of Artificial Intelligence, 2015, 43: 81-88. [13] FRADI H, EISELEIN V, DUGELAY J L, et al. Spatio-temporal crowd density model in a human detection and tracking framework[J]. Image Communication, 2015, 31(C): 100-111. [14] RAO A S, GUBBI J, MARUSIC S, et al. Estimation of crowd density by clustering motion cues[J]. Visual Computer International Journal of Computer Graphics, 2015, 31(11): 1533-1552. [15] ZHENG Y, JIA B, LI X G, et al. Evacuation dynamics with fire spreading based on cellular automaton[J]. Physica A Statistical Mechanics & Its Applications, 2011, 390(18-19): 3147-3156. [16] ALIZADEH R. A dynamic cellular automaton model for evacuation process with obstacles[J]. Safety Science, 2011, 49(2): 315-323. [17] 白锐, 梁力达, 田宏. 人群聚集场所拥挤踩踏事故原因分析与对策[J]. 工业安全与环保, 2009, 35(2): 47-55. BAI Rui, LIANG Lida, TIAN Hong. Research on the cause and countermeasure of the crowd stampede in the crowding area[J]. Industrial Safety and Environmental Protection, 2009, 35(2): 47-55. [18] 佟瑞鹏, 李春旭, 郑毛景, 等. 拥挤踩踏事故风险定量评价模型及其优化分析[J]. 中国安全科学学报, 2013, 23(12): 90-93. TONG Ruipeng, LI Chunxu, ZHENG Maojing, et al. Quantitative assessment modal of the risks of the crowd stampede[J]. China Safety Science Journal, 2013, 23(12): 90-93. [19] MA Y, YUEN R K K, LEE E W M. Effective leadership for crowd evacuation[J]. Physica A Statistical Mechanics & Its Applications, 2016, 450: 333-341. [20] HOU L, LIU J G, PAN X, et al. A social force evacuation model with the leadership effect[J]. Physica A Statistical Mechanics & Its Applications, 2014, 400: 93-99. [21] CAO S, SONG W, LV W. Modeling pedestrian evacuation with guiders based on a multi-grid model[J]. Physics Letters A, 2016, 380(4): 540-547. [22] 袁千里. 人群拥挤踩踏事件原因与应急处置探究——上海外滩迎新踩踏事件的反思[J]. 中国应急救援, 2015, 52(2): 13-16. YUAN Qianli. The research on the cause and prevention of the human stampedes-Based on the 2014 Shanghai stampede[J]. China Emergency Rescue, 2015, 52(2): 13-16. [23] SAATY T L. Fundamentals of the analytic network process—Dependence and feedback in decision-making with a single network[J]. Journal of Systems Science and Systems Engineering, 2004, 13 (2): 129-157. |