[1] HUMMER J E. Driverless America: what will happen when most of us choose automated vehicles[M]. USA: SAE International, 2020. [2] TALEBIAN A, MISHRA S. Unfolding the state of the adoption of connected autonomous trucks by the commercial fleet owner industry[J]. Transportation Research Part E, 2022, 158: 102616 [3] SIMPSON J R, SHARMA I, MISHRA S. Modeling trucking industry perspective on the adoption of connected and autonomous trucks[J]. Research in Transportation Business and Management, 2022, 45: 100883 [4] BERGENHEM C, HEDIN E, SKARIN D. Vehicle-to-vehicle communication for a platooning system[J]. Procedia-Social and Behavioral Sciences, 2012, 48: 1222-1233 [5] MAITI S, WINTER S, KULIK L. A conceptualization of vehicle platoons and platoon operations[J]. Transportation Research Part C, 2017, 80: 1-19 [6] JANSSEN G R, ZWIJNENBERG J, BLANKERS I J, et al. Truck platooning: driving the future of transportation[DB/OL]. (2015-02). https://trid.trb.org/view/1350499. [7] TSUGAWA S, KATO S, AOKI K. An automated truck platoon for energy saving[C/OL]//IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE, 2011: 4109–4114 (2011-12-05). https://ieeexplore.ieee.org/document/6094549. [8] MA X, HUO E, YU H, et al. Mining truck platooning patterns through massive trajectory data[J]. Knowledge-Based Systems, 2021, 221: 106972 [9] 周伟力. 文远知行发布L4自动驾驶轻客, 进军货运领域[EB/OL]. (2021-09-11). https://baijiahao.baidu.com/s?id=1710577370636936360&wfr=spider&for=pc. [10] 亦城时报. 自动驾驶卡车企业抢下两个全市首家[EB/OL]. (2023-10-10). https://open.beijing.gov.cn/html/yizhuang/gzdt/2023/10/1696907894219.html. [11] 潘亮. 广州首个自动驾驶卡车来了!获准L4级编队行驶测试[EB/OL]. (2023-11-22). http://k.sina.com.cn/article_2131593523_7f0d893302001chgp.html. [12] GUANETTI J, KIM Y, BORRELLI F. Control of connected and automated vehicles: state of the art and future challenges[J]. Annual Reviews in Control, 2018, 45: 18-40 [13] CHENG H, WANG Y, CHONG D, et al. Truck platooning reshapes greenhouse gas emissions of the integrated vehicle-road infrastructure system[J]. Nature Communications, 2023, 14: 1-10 [14] WANG M, MAARSEVEEN S V, HAPPEE R, et al. Benefits and risks of truck platooning on freeway operations near entrance ramp[J]. Transportation Research Record:Journal of the Transportation Research Board, 2019, 2673(8): 588-602 [15] CALVERT S C, SCHAKEL W J, Arem B V. Evaluation and modelling of the traffic flow effects of truck platooning[J]. Transportation Research Part C, 2019, 105: 1-22 [16] GUAJARDO M, RÖNNQVIST M. A review on cost allocation methods in collaborative transportation[J]. International Transactions in Operational Research, 2016, 23(3): 371-392 [17] HOU J, CHEN G, HUANG J, et al. Large-scale vehicle platooning: advances and challenges in scheduling and planning techniques[J]. Engineering, 2023, 28: 26-48 [18] ZHANG Y, XU Z, WANG Z, et al. Impacts of communication delay on vehicle platoon string stability and its compensation strategy: a review[J]. Journal of Traffic and Transportation Engineering (English Edition) , 2023, 10(4): 508-529 [19] BHOOPALAM A K, AGATZ N, ZUIDWIJK R. Planning of truck platoons: a literature review and directions for future research[J]. Transportation Research Part B, 2018, 107: 212-228 [20] NASRI M I, BEKTAS T, LAPORTE G. Route and speed optimization for autonomous trucks[J]. Computers and Operations Research, 2018, 100: 89-101 [21] TURRI V, BESSELINK B, JOHANSSON K H. Cooperative look-ahead control for fuel-efficient and safe heavy-duty vehicle platooning[J]. IEEE Transactions on Control Systems Technology, 2017, 25(1): 12-28 [22] BEZAI N E, MEDJDOUB B, AL-HABAIBEH A, et al. Future cities and autonomous vehicles: analysis of the barriers to full adoption[J]. Energy and Built Environment, 2021, 2(1): 65-81 [23] 景鹏, 袁代标, 杜刘洋, 等. 基于科学知识图谱的自动驾驶技术接受度研究综述[J]. 江苏大学学报 (自然科学版) , 2023, 44(1): 14-21 JING Peng, YUAN Daibiao, DU Liuyang, et al. Research of acceptance of autonomous vehicles technology based on mapping knowledge domain[J]. Journal of Jiangsu University (Natural Science Edition) , 2023, 44(1): 14-21 [24] RAJ A, KUMAR J A, BANSAL P. A multicriteria decision making approach to study barriers to the adoption of autonomous vehicles[J]. Transportation Research Part A, 2020, 133: 122-137 [25] CASTRITIUS S M, LU X, BERNHARD C, et al. Public acceptance of semi-automated truck platoon driving. A comparison between Germany and California[J]. Transportation Research Part F, 2020, 74: 361-374 [26] BHOOPALAM A K, VAN DEN BERG R, AGATZ N, et al. The long road to automated trucking: insights from driver focus groups[J]. Transportation Research Part C, 2023, 156: 104351 [27] SIMPSON J R, MISHRA S, TALEBIAN A, et al. An estimation of the future adoption rate of autonomous trucks by freight organizations[J]. Research in Transportation Economics, 2019, 76: 100737 [28] SIMPSON J R, MISHRA S. Developing a methodology to predict the adoption rate of connected autonomous trucks in transportation organizations using peer effects[J]. Research in Transportation Economics, 2021, 90: 100866 [29] BECKER F, AXHAUSEN K W. Literature review on surveys investigating the acceptance of autonomous vehicles[J]. Transportation, 2017, 44(6): 1293-1306 [30] CHEN S, WANG H, MENG Q. Cost allocation of cooperative autonomous truck platooning: efficiency and stability analysis[J]. Transportation Research Part B, 2023, 173: 119-141 [31] BOUCHERY Y, HEZARKHANI B, STAUFFER G. Coalition formation and cost sharing for truck platooning[J]. Transportation Research Part B, 2022, 165: 15-34 [32] SINDI S, WOODMAN R. Implementing commercial autonomous road haulage in freight operations: an industry perspective[J]. Transportation Research Part A, 2021, 152: 235-253 [33] XUE Z, LIN H, YOU J. Local container drayage problem with truck platooning mode[J]. Transportation Research Part E, 2021, 147: 102211 [34] 张泽锡, 钟文健, 林柏梁. 带时间窗的卡车编队路径优化[J]. 交通运输系统工程与信息, 2022, 22(5): 253-263 ZHANG Zexi, ZHONG Wenjian, LIN Boliang. Optimization of Truck platooning routing with time windows[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(5): 253-263 [35] OKTE E, AL-QADI I L. Determining road networks' platoonability[J]. Journal of Transportation Engineering Part A, 2021, 147(10): 04021060 [36] LUO F, LARSON J. A repeated route-then-schedule approach to coordinated vehicle platooning: algorithms, valid inequalities and computation[J]. Operations Research, 2022, 70(4): 2477-2495 [37] YAN X, XU M, XIE C. Local container drayage problem with improved truck platooning operations[J]. Transportation Research Part E, 2023, 169: 102992 [38] YOU J, MIAO L, ZHANG C, et al. A generic model for the local container drayage problem using the emerging truck platooning operation mode[J]. Transportation Research Part B, 2020, 133: 181-209 [39] GUNGOR O E, SHE R, AL-QADI I L, et al. One for all: decentralized optimization of lateral position of autonomous trucks in a platoon to improve roadway infrastructure sustainability[J]. Transportation Research Part C, 2020, 120: 102783 [40] SONG M, CHEN F, MA X. Organization of autonomous truck platoon considering energy saving and pavement fatigue[J]. Transportation Research Part D, 2021, 90: 102667 [41] LIANG K Y, MARTENSSON J, JOHANSSON K H. Heavy-duty vehicle platoon formation for fuel efficiency[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(4): 1051-1061 [42] ZHANG W, JENELIUS E, MA X. Freight transport platoon coordination and departure time scheduling under travel time uncertainty[J]. Transportation Research Part E, 2017, 98: 1-23 [43] LARSSON E, SENNTON G, LARSON J. The vehicle platooning problem: computation complexity and heuristics[J]. Transportation Research Part C, 2015, 60: 258-277 [44] ZHAO B, LEUS R. An improved decomposition-based heuristic for truck platooning[J]. Computers and Operations Research, 2024, 161: 106439 [45] MEISEN P, SEIDL T, HENNING K. A data mining technique for the planning and organization of truck platoons[C/OL]//International Conference on Heavy Vehicles. Hoboken: Wiley Online Library, 2008: 270-279 (2009-04-06). https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118557464.ch30. [46] VAN DE HOEF S. Fuel-efficient centralized coordination of truck platooning[D]. Stockholm: KTH Royal Institute of Technology, 2016. [47] ADLER A, MICULESCU D, KARAMAN S. Optimal policies for platooning and ride sharing in autonomy- enabled transportation[M/OL]//Algorithmic Foundations of Robotics XII. Switzerland: Springer, 2020: 848-863 (2020-05-07). https://link.springer.com/chapter/10.1007/978-3-030-43089-4_54. [48] LIANG K Y, MARTENSSON J, JOHANSSON K H. Fuel-saving potentials of platooning evaluated through sparse heavy-duty vehicle position data[C/OL]//IEEE Intelligent Vehicles Symposium. New York: IEEE, 2014: 1061-1068 (2014-06-14). https://ieeexplore.ieee.org/abstract/document/6856540. [49] BESSELINK B, TURRI V, VAN DE HOEF S, et al. Cyber-physical control of road freight transport[C/OL]// IEEE International Conference on Autonomic Computing. New York: IEEE, 2016, 104 (5) : 1128-1141 (2016-03-21). https://ieeexplore.ieee.org/document/7437386. [50] LI Q, CHEN Z, LI X. A review of connected and automated vehicle platoon merging and splitting operations[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 22790-22806 [51] GUO G, WANG Q. Fuel-efficient en route speed planning and tracking control of truck platoons[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(8): 3091-3103 [52] LIAN R, LI Z, WEN B, et al. Multiagent deep reinforcement learning for automated truck platooning control[J/OL]. IEEE Intelligent Transportation Systems Magazine, 2023 (2023-10-06). https://ieeexplore.ieee.org/abstract/document/10273625. [53] DURET A, WANG M, LADINO A. A hierarchical approach for splitting truck platoons near network discontinuities[J]. Transportation Research Part B, 2019, 132: 285-302 [54] XUE Y, DING C, YU B, et al. A platoon-based hierarchical merging control for on-ramp vehicles under connected environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 21821-21832 [55] KIM J. Truck platoon control considering heterogeneous vehicles[J]. Applied Sciences, 2020, 10(15): 5067 [56] LI M, LI Z, ZHOU Y, et al. A cooperative energy efficient truck platoon lane-changing model preventing platoon decoupling in a mixed traffic environment[J/OL]. Journal of Intelligent Transportation Systems, 2022 (2022-11-16). https://doi.org/10.1080/15472450.2022.2119386. [57] DASGUPTA S, RAGHURAMAN V, CHOUDHURY A, et al. Merging and splitting maneuver of platoons by means of a novel PID controller[C/OL]//IEEE Symposium Series on Computational Intelligence. New York: IEEE, 2017 (2018-02-05). https://ieeexplore.ieee.org/abstract/document/8280871. [58] LESCH V, BREITBACH M, SEGATA M, et al. An overview on approaches for coordination of platoons[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 10049-10065 [59] ZHAO C, LI L, LI J, et al. The impact of truck platoons on the traffic dynamics around off-ramp regions[J]. IEEE Access, 2021, 9: 57010-57019 [60] LI D, ZHU F, CHEN T, et al. COOR-PLT: a hierarchical control model for coordinating adaptive platoons of connected and autonomous vehicles at signal-free intersections based on deep reinforcement learning[J]. Transportation Research Part C, 2023, 146: 103933 [61] 高云峰, 席建伟, 孙科. 面向客货分离交叉口的网联货车队列车速引导与信号优先组合优化[J]. 交通运输系统工程与信息, 2023, 23(4): 88-101 GAO Yunfeng, XI Jianwei, SUN Ke. Joint optimization of speed guidance and signal priority control for connected autonomous truck platoon at intersections with car and truck separation[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(4): 88-101 [62] MARTINEZ-DIAZ M, AL-HADDAD C, SORIGUERA F, et al. Platooning of connected automated vehicles on freeways: a bird's eye view[J]. Transportation Research Procedia, 2021, 58: 479-486 [63] 岑晏青, 宋向辉, 王东柱, 等. 智慧高速公路技术体系构建[J]. 公路交通科技, 2020, 37(7): 111-121 CEN Yanqing, SONG Xianghui, WANG Dongzhu, et al. Establishment of technology system of smart expressway[J]. Journal of Highway and Transportation Research and Development, 2020, 37(7): 111-121 [64] 张晓彤, 王嘉诚, 何景涛, 等. 面向不确定性环境的自动驾驶运动规划: 机遇与挑战[J]. 模式识别与人工智能, 2023, 36(1): 1-21 ZHANG Xiaotong, WANG Jiacheng, HE Jingtao, et al. Motion planning uncertainty for autonomous driving: opportunities and challenges[J]. Pattern Recognition and Artificial Intelligence, 2023, 36(1): 1-21 [65] 李茜瑶, 牛树云, 车晓琳, 等. 自动驾驶车辆混入下的货车专用车道设置条件评价方法[J]. 公路交通科技, 2023, 40(6): 182-193 LI Xiyao, NIU Shuyun, CHE Xiaolin, et al. An evaluation method for setting condition of dedicated truck lane mixed with automatic vehicles[J]. Journal of Highway and Transportation Research and Development, 2023, 40(6): 182-193
|