[1] MONTGOMERY D C. Introduction to statistical quality control[M]. New Jersey, USA: John Wiley & Sons, 2007. [2] SWIFT J A. Development of a knowledge based expert system for control chart pattern recognition and analysis[D]. USA: Oklahoma State University, 1987. [3] BAG M, GAURI S K, CHAKRABORTY S. An expert system for control chart pattern recognition[J]. The International Journal of Advanced Manufacturing Technology, 2012, 62(1/4): 291-301 [4] ZHOU X, JIANG P, WANG X. Recognition of control chart patterns using fuzzy SVM with a hybrid kernel function[J]. Journal of Intelligent Manufacturing, 2018, 29(1): 51-67 [5] AWADALLA M H A, SADEK M A. Spiking neural network-based control chart pattern recognition[J]. Alexandria Engineering Journal, 2012, 51(1): 27-35 [6] ADDEH A, KHORMALI A, GOLILARZ N A. Control chart pattern recognition using RBF neural network with new training algorithm and practical features[J]. ISA Transactions, 2018, 79: 202-216 [7] GHOMI S M T F, LESANY S A, KOOCHAKZADEH A. Recognition of unnatural patterns in process control charts through combining two types of neural networks[J]. Applied Soft Computing, 2011, 11(8): 5444-5456 [8] KHORMALI A, ADDEH J. A novel approach for recognition of control chart patterns: Type-2 fuzzy clustering optimized support vector machine[J]. ISA Transactions, 2016, 63: 256-264 [9] WANG C H, KUO W, QI H. An integrated approach for process monitoring using wavelet analysis and competitive neural network[J]. International Journal of Production Research, 2007, 45(1): 227-244 [10] ZAN T, LIU Z, WANG H, et al. Control chart pattern recognition using the convolutional neural network[J]. Journal of Intelligent Manufacturing, 2019, 31: 1-14 [11] 徐旭东, 马立乾. 基于迁移学习和卷积神经网络的控制图识别[J]. 计算机应用, 2018, 38(S2): 290-295 XU Xudong, MA Liqian. Control chart recognition on transfer learning and convolution neural network[J]. Journal of Computer Applications, 2018, 38(S2): 290-295 [12] MOHAMED E A, ABDELAZIZ A Y, MOSTAFA A S. A neural network-based scheme for fault diagnosis of power transformers[J]. Electric Power Systems Research, 2005, 75(1): 29-39 [13] XANTHOPOULOS P, RAZZAGHI T. A weighted support vector machine method for control chart pattern recognition[J]. Computers & Industrial Engineering, 2014, 70: 134-149 [14] GAURI S K, CHAKRABORTY S. Improved recognition of control chart patterns using artificial neural networks[J]. The International Journal of Advanced Manufacturing Technology, 2008, 36(11-12): 1191-1201 [15] HASSAN A, BAKSH M S N, SHAHAROUN A M, et al. Improved SPC chart pattern recognition using statistical features[J]. International Journal of Production Research, 2003, 41(7): 1587-1603 [16] DU S, HUANG D, LV J. Recognition of concurrent control chart patterns using wavelet transform decomposition and multiclass support vector machines[J]. Computers & Industrial Engineering, 2013, 66(4): 683-695 [17] 刘玉敏, 赵哲耘. 基于特征选择与SVM的质量异常模式识别[J]. 统计与决策, 2018, 34(10): 47-51 LIU Yumin, ZHAO Zheyun. Pattern recognition of abnormal quality based on feature selection and SVM[J]. Statistics & Decision, 2018, 34(10): 47-51 [18] 那日萨. 模糊系统数学及其应用[M]. 北京: 清华大学出版社, 2017: 63-79. [19] 周昊飞. 基于小波分析的控制图模式识别研究[D]. 郑州: 郑州大学, 2012. ZHOU Haofei. The research of control chart pattern recognition based on wavelet analysis[D]. Zhengzhou: Zhengzhou University, 2012.
|