工业工程 ›› 2022, Vol. 25 ›› Issue (3): 132-140.doi: 10.3969/j.issn.1007-7375.2022.03.016

• 实践与应用 • 上一篇    下一篇

具有多资源协同约束的作业车间排队网建模与分析

李程平, 张惠煜, 陈庆新, 毛宁   

  1. 广东工业大学 广东省计算机集成制造系统重点实验室,广东 广州,510006
  • 收稿日期:2021-01-16 发布日期:2022-07-06
  • 通讯作者: 张惠煜(1989—),男,广东省人,讲师,博士,主要研究方向为制造系统规划设计。E-mail: hyzhang_henry@126.com E-mail:hyzhang_henry@126.com
  • 作者简介:李程平(1996—),男,广东省人,硕士研究生,主要研究方向为制造系统规划设计
  • 基金资助:
    国家自然科学基金资助项目(61973089);广东省自然科学基金资助项目(2022A1515011175)

Queuing Network Modeling and Analysis of Workshop with Multi-resource Collaborative Constraints

LI Chengping, ZHANG Huiyu, CHEN Qingxin, MAO Ning   

  1. Key Laboratory of Computer Integrated Manufacturing System of Guangdong Province, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2021-01-16 Published:2022-07-06

摘要: 针对定制化生产环境下的人机协同作业车间,研究基于排队网建模的系统性能指标求解方法。考虑系统多资源约束的特点,建立有限缓冲区开排队网模型描述该生产系统的随机过程,并应用状态空间分解法建立各节点的状态空间以及状态转移平衡方程,通过对状态转移平衡方程的求解,得到系统处于各状态的稳态概率,据此近似求解系统各项性能指标。在仿真平台建立系统仿真模型,通过算例实验的结果与排队网模型的计算结果对比分析,系统各项性能指标的相对误差都在11%以内,验证了系统性能求解方法的精确性和有效性。基于排队网模型分析不同参数对系统性能的影响,为进一步研究该类作业车间的资源配置优化问题提供参考。

关键词: 排队网, 多资源约束, 状态空间分解法, 性能分析

Abstract: Focused on a man-machine collaborative workshop in the customized manufacturing environment, the solution about system performance indexes is studied based on queuing network modeling. Considering multi-resource constraints in particular, an open queuing network model with finite buffer capacity is built to describe stochastic process of the system, and the state space and state transition balance equation of each node built by using the state space decomposition method. The steady-state probability of the system in each state is obtained by solving the state transition balance equation, and then the system performance indexes were approximately solved. A simulation model is built. Through the comparative analysis of the experimental results with the results of the queuing network model, the relative error of each system performance index is less than 11%, which verifies the accuracy and effectiveness of the solution. The influence of different parameters on the system performance is analyzed based on the queuing network model. It provides basis for further research on resources optimization of this type of workshop.

Key words: queuing network, multiple resource constraints, state space decomposition method, performance analysis

中图分类号: