工业工程 ›› 2022, Vol. 25 ›› Issue (3): 141-150.doi: 10.3969/j.issn.1007-7375.2022.03.017

• 实践与应用 • 上一篇    下一篇

基于改进Jaya算法的置换流水车间调度问题研究

刘梦伊1, 薛燕社2, 马思奕1, 张超勇2   

  1. 1. 河海大学 商学院,江苏 南京 211100;
    2. 华中科技大学 机械科学与工程学院,湖北 武汉 430074
  • 收稿日期:2020-09-25 发布日期:2022-07-06
  • 通讯作者: 张超勇 (1972—),男,江苏省人,教授,主要研究方向为智能调度、智能系统优化和可持续制造。 E-mail: zcyhust@hust.edu.cn E-mail:zcyhust@hust.edu.cn
  • 作者简介:刘梦伊(2000—),女,湖北省人,本科生,主要研究方向为调度算法
  • 基金资助:
    国家自然科学基金资助项目(51875429);广东省重点领域研发计划资助项目(2019B090921001)

An Improved Jaya Algorithm for Permutation Flow Shop Scheduling Problem

LIU Mengyi1, XUE Yanshe2, MA Siyi1, ZHANG Chaoyong2   

  1. 1. Business School of Hohai University, Nanjing 211100, China;
    2. School of Mechanical Science and Engineering , Huazhong University of Science and Technology, Wuhan 430074, China
  • Received:2020-09-25 Published:2022-07-06

摘要: 置换流水车间调度问题(permutation flow shop scheduling problem, PFSP)广泛存在于流程和离散制造企业。本文提出一种改进的Jaya算法求解最小化最大完工时间为目标的PFSP。在改进Jaya算法中,设计了基于最优和最差个体的4种个体更新方案,通过4种邻域结构对个体进行局部搜索,并通过多样性控制策略来保证种群的多样性。采用改进Jaya算法分解求解Car、 Rec和Taillard基准问题,并与其他算法进行比较,验证了所提算法的有效性。

关键词: 置换流水车间调度问题, Jaya算法, 局部搜索, 基准问题

Abstract: Permutation flow shop scheduling problem is widely applied in process and discrete manufacturing enterprises. An improved Jaya algorithm is proposed to solve the PFSP with the minimum makespan. In the improved Jaya algorithm, four individual updating schemes based on the best and the worst individuals are proposed, and local search for individuals is carried out through four neighborhood structures. Diversity control strategy is applied to ensure the diversity of population. The improved Jaya algorithm is used to solve the Car, Rec and Taillard benchmark instances, and the experimental results validate the effectiveness of the proposed algorithm.

Key words: permutation flow shop scheduling problem, Jaya algorithm, local search, benchmark problem

中图分类号: