[1] GHORABAEE M K, ZAVADSKAS E K, OLFAT L, et al. Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS) [J]. Informatica, 2015, 26(3): 435-451 [2] 彭定洪, 张文华. 智慧无废城市评选的序贯式群决策EDAS法[J]. 系统科学与数学, 2021, 41(3): 688-704 PENG Dinghong, ZHANG Wenhua. Sequential group EDAS decision making method for smart zero waste city selection[J]. Journal of Systems Science and Mathematics, 2021, 41(3): 688-704 [3] YAZDANI M, TORKAYESH A E, SANTIBANEZ-GONZALEZ E D, et al. Evaluation of renewable energy resources using integrated Shannon entropy – EDAS model[J]. Sustainable Operations and Computers, 2020, 1: 35-42 [4] MISHRA A R, MARDANI A, RANI P, et al. A novel EDAS approach on intuitionistic fuzzy set for assessment of health-care waste disposal technology using new parametric divergence measures[J]. Journal of Cleaner Production, 2020, 272(1): 122807 [5] 童玉珍, 王应明. 基于后悔理论及EDAS法的概率语言多属性群决策方法[J]. 计算机应用, 2020, 40(11): 3152-3158 TONG Yuzhen, WANG Yingming. Multi-attribute group decision making method for probabilistic linguistic term set based on regret theory and distance from average solution method[J]. Journal of Computer Applications, 2020, 40(11): 3152-3158 [6] SRIVASTAVA P, MUSTAFA A, KHANDUJA D, et al. Prioritizing autonomous maintenance system attributes using fuzzy EDAS approach[J]. Procedia Computer Science, 2020, 167: 1941-1949 [7] 耿秀丽, 马阳. 基于犹豫模糊语言的多阶段多属性决策方法[J]. 计算机应用研究, 2021, 38(2): 484-488 GENG Xiuli, MANG Yang. Multi-stage multi-attribute decision-making method based on hesitant fuzzy linguistic[J]. Application Research of Computers, 2021, 38(2): 484-488 [8] ZADEH L A. The concept of a linguistic variable and its application to approximate reasoning-III[J]. Information Sciences, 1975, 9(1): 43-80 [9] MENDEL J M, JOHN R I, LIU F L. Interval type-2 fuzzy logic systems made simple[J]. IEEE Transactions on Fuzzy Systems, 2006, 14(6): 808-821 [10] 刘超, 汤国林, 刘培德. 基于模糊测度与累积前景理论的区间二型模糊多准则决策方法[J]. 运筹与管理, 2020, 29(9): 70-81 LIU Chao, TANG Guolin, LIU Peide. Interval type-2 fuzzy muti-criteria decision making method based on fuzzy measures and cumulative prospect theory[J]. Operations Research and Management Science, 2020, 29(9): 70-81 [11] TURSKIS Z, JUODAGALVIEN? B. A novel hybrid multi-criteria decision-making model to assess a stairs shape for dwelling houses[J]. Journal of Civil Engineering and Management, 2016, 22(8): 1078-1087 [12] TURSKIS Z, MORKUNAITE Z, KUTUT V. A hybrid multiple criteria evaluation method of ranking of cultural heritage structures for renovation projects[J]. International Journal of Strategic Property Management, 2017, 21(3): 318-329 [13] REZAEI J. Best-worst multi-criteria decision-making method[J]. Omega, 2015, 53: 49-57 [14] MENDEL J M. Type-2 fuzzy sets and systems: an overview[J]. IEEE Computational Intelligence Magazine, 2007, 2(2): 20-29 [15] KAHRAMAN C, ÖZTAYŞI B, SARİ İ U, et al. Fuzzy analytic hierarchy process with interval type-2 fuzzy sets[J]. Knowledge-Based Systems, 2014, 59: 48-57 [16] CHEN S M, YANG M W, LEE L W, et al. Fuzzy multiple attributes group decision-making based on ranking interval type-2 fuzzy sets[J]. Expert Systems with Applications, 2012, 39(5): 5295-5308 [17] GONG X M, YANG M, DU P L. Renewable energy accommodation potential evaluation of distribution network: a hybrid decision-making framework under interval type-2 fuzzy environment[J]. Journal of Cleaner Production, 2021, 286: 124918. [18] 陶秋香, 涂继亮, 程若发, 等. 基于未确知集和模糊TOPSIS决策的故障模式风险评估[J]. 计算机应用研究, 2018, 35(9): 2676-2679 TAO Qiuxiang, XU Jiliang, CHENG Ruofa, et al. Risk assessment of failure mode based on unascertained set and fuzzy TOPSIS decision[J]. Application Research of Computers, 2018, 35(9): 2676-2679
|