工业工程 ›› 2017, Vol. 20 ›› Issue (2): 44-50.doi: 10.3969/j.issn.1007-7375.e16-1218

• 专题论述 • 上一篇    下一篇

多资源车间调度问题的研究

范佳静   

  1. 浙江科技学院 经济与管理学院, 浙江 杭州 310023
  • 收稿日期:2016-08-13 出版日期:2017-04-30 发布日期:2017-05-13
  • 作者简介:范佳静(1977-)女,浙江省人,副教授,博士,主要研究方向为单元制造系统构建、调度及规划.

A Study of Job-Shop Scheduling Based on Multi-Resource Constrained

FAN Jiajing   

  1. School of Economics and Management, Zhejiang University of Science and Technology, Hangzhou 310023, China
  • Received:2016-08-13 Online:2017-04-30 Published:2017-05-13

摘要: 为了更好地适应现代制造企业调度的实际需求,针对机器人在制造企业的广泛应用以及人力资源的重要作用,提出了基于设备、人员和机器人的多资源调度问题。以零件交货不满足时间窗的惩罚成本、所需设备和机器人的运作成本以及操作人员的工资成本最小为目标,构建0-1整数规划数学模型。针对调度模型的复杂性及特征,提出了改进遗传算法进行模型的求解验证,通过7个不同规模算例的求解分析,证明了模型和算法的有效性。

关键词: 机器人, 多资源, 调度, 改进遗传算法

Abstract: Considering that machines, workers and robots are important human resource and that robots are widely applied in manufacturing company, a job-shop scheduling problem is put forward based on multi-resource constraint, in order to better adapt the actual scheduling demand of modern enterprises. Aiming at minimum sum of delivery penalty cost, machines and robot operation cost and employee wage cost, a 0-1 integer program mathematical model is built. An advanced genetic algorithm presented to solve this model according to the complexity and characteristics of the scheduling model. At last through an analysis of seven cases of different scales, the validity of the model and algorithm is proven.

Key words: robot, multi-resource, scheduling, advanced genetic algorithm

中图分类号: